首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The behavioural response of infective juveniles (IJs) of Heterorhabditis megidis (strain NLH-E87.3) to cues from roots of strawberry (Fragaria x ananassa Duch.), thuja (Thuja occidentalis L.) and to larvae of the black vine weevil, Otiorhynchus sulcatus, was studied. Choice assays were conducted in an Y-tube olfactometer filled with moist sand. Infective juveniles were activated by the presence of intact roots of both strawberry and thuja plants. Some nematodes aggregated in the compartments with roots but most moved away from the roots to the opposite side. Given a choice, IJs showed a preference for strawberry roots above O. sulcatus larvae. No difference in preference was observed between thuja roots and O. sulcatus larvae. The combination of strawberry roots with vine weevil larvae was preferred above roots alone. In the assays with thuja roots and larvae versus thuja roots alone, however, IJs were stimulated to move but showed preference for the opposite compartment away from the arms with roots and larvae. Nematodes responded differently to mechanically damaged roots as opposed to roots damaged by vine weevil larvae. In assays with damaged thuja roots, IJs were most attracted by the roots damaged by larvae, whereas in the strawberry assays IJs showed a clear preference for the mechanically damaged roots. When challenged with a choice between strawberry and thuja roots, IJs moved preferentially to strawberry than to thuja roots. A preference for the combination of strawberry roots plus larvae over the thuja roots plus larvae was also observed.  相似文献   

2.
Strawberry roots were sampled through the year to determine the populations and distribution of Pratylenchus penetrans and Meloidogyne hapla. Three strawberry root types were sampled—structural roots; feeder roots without secondary tissues; and suberized, black perennial roots. Both lesion and root-knot nematodes primarily infected feeder roots from structural roots or healthy perennial roots. Few nematodes were recovered from soil, diseased roots, or suberized roots. Lesion nematode recovery was correlated with healthy roots. In both 1997 and 1998, P. penetrans populations peaked about day 150 (end of May) and then declined. The decline in numbers corresponded to changes in total strawberry root weight and root type distribution. The loss of nematode habitat resulted from loss of roots due to disease and the transition from structural to suberized perennial roots. Meloidogyne hapla juvenile recovery peaked around 170 days (mid June) in 1997 and at 85, 147, 229, and 308 days (late March, late May, mid August, and early November, respectively) in 1998. There appear to be at least four generations per year of M. hapla in Connecticut. Diagnostic samples from an established strawberry bed may be most reliable and useful when they include feeder roots taken in late May.  相似文献   

3.
Forty plant species were grown in pots containing viruliferous Xiphinema diversicaudatum (Micol.) for 15 wk to assess the host range of the nematode in relation to infection with arabis mosaic (AMV) and strawberry latent ring-spot (SLRV) viruses. Host status for the nematode was determined mainly from changes in total populations, but the presence of eggs in the uteri of females and changes in the numbers of adults provided additional criteria. The nematode multiplied on relatively more woody perennials than on herbaceous crop plants or weeds. Chrysanthemum coronarium was the only plant on which numbers declined significantly below those on the controls. Most plant species became infected with either AMV or SLRV. Neither virus was detected in eight out of thirteen species of trees and shrubs although four were good hosts for the nematode. Galling or distortion of the terminal region of fine feeder roots, associated with X. diversicaudatum feeding, was seen on many of the experimental plants.  相似文献   

4.
The interaction of Pseudomonas chlororaphis strain Sm3 and the root-lesion nematode Pratylenchus penetrans was investigated in three separate greenhouse experiments with soils from southern British Columbia, Canada. The bacteria were applied to the roots of strawberry plants and planted in unpasteurized field soils, with natural or supplemented infestation of P. penetrans. Nematode suppression in roots was evident after 6 or 10 weeks in all experiments. Root or shoot growth were increased after 10 weeks in two experiments. Population dynamics of P. chlororaphis Sm3 in the rhizosphere was followed using an antibiotic-resistant mutant of P. chlororaphis Sm3. There was no apparent correlation between bacterial density in the rhizosphere and P. penetrans suppression in strawberry roots and rhizosphere soil, although the soil with the highest nematode reduction also had the largest P. chlororaphis Sm3 population in the rhizosphere.  相似文献   

5.
Microplot and small field-plot experiments were conducted to determine the effects of Pratylenchus penetrans on strawberry yield over several seasons and to evaluate the effects of nematode control on strawberry vigor and yield. Pratylenchus penetrans alone or in combination with the black root rot pathogen, Rhizoctonia fragariae, reduced strawberry yield in microplots over time. There were no differences in effects on yield among R. fragariae anastomosis groups A, G, or I. The interaction of the two pathogens appeared to be additive rather than synergistic. In field plots infested with P. penetrans alone, plant vigor and yield were increased by the application of carbofuran and fenamiphos nematicides. Nematode control was transitory, as P. penetrans populations were initially suppressed but were not different in samples taken 10 months after treatment. These data highlight the error in associating causality between plant damage and nematode populations based on a correlation of root disease with nematode diagnostic assays from severely diseased plants. These findings may help to explain how nematode numbers can sometimes be higher in healthy plants than in severely diseased plants that lack sufficient roots to maintain nematode populations. Because nematode populations from up to a year before harvest are better correlated with berry yield, preplant nematode diagnostic assays taken a year in advance of harvest may be superior in predicting damage to perennial strawberry yield.  相似文献   

6.
The fungus Gnomonia comari, causal agent of strawberry leaf blotch, was inoculated at the crown of young axenized strawberry plants growing in sterilized sand. Only the roots were colonized, and the infection was symptomless. When the fungus colonized the roots in the presence of the root lesion nematode Pratylenchus penetrans, the plants were extremely stunted and their root system was necrotic. Fungal conidiospores were found attached to the cuticle of nematodes extracted from soil inoculated with the two pathogens. These findings indicate that P. penetrans could transport conidiospores through soil.  相似文献   

7.
The nematode Pratylenchus penetrans or the closely related P. fallax occurred in three out of four strawberry plantations infested with Verticillium dahliae surveyed in Kent. When plants of cv. Cambridge Vigour were inoculated with P. penetrans and V. dahliae together in field ‘micro-plots’ the nematode increased the rate of wilt development except when the concentration of V. dahliae microsclerotia in the soil was very low. In a pot experiment, under conditions not conducive to symptom expression, the incidence of infection was increased by nematodes in Cambridge Favourite, Cambridge Vigour and Redgauntlet; the incidence was least in Red-gauntlet, the most resistant cultivar. The nematode appeared to cause local changes in the root cortex which aided hyphal penetration of the adjacent tissues. Growth of strawberry plants in the absence of V. dahliae was not significantly affected even by large populations of the nematode, but growth was reduced by V. dahliae at all rates of inoculation in the field. Infection by Verticillium did not affect the total numbers of nematode per plant at the end of the experiments, although the number per g fresh weight was greater on the small amount of white root on severely diseased plants than on the larger amount on healthy or mildly diseased plants.  相似文献   

8.
An isolate of Bacillus thuringiensis, designated CR‐371, was evaluated for efficacy in controlling plant‐parasitic nematodes. This isolate was first shown to be nematicidal to Caenorhabditis elegans in an in vitro laboratory assay. Treatment resulted in a significant reduction in galls due to root‐knot nematode on tomato in a greenhouse trial. In two field trials in Puerto Rico, CR‐371‐treated tomatoes and pepper had significantly fewer root galls due to Meloidogyne incognita than untreated controls, and populations of Rotylenchulus reniformis were smaller. In one experiment, CR‐371 treatment was associated with significant increases in pepper yields, while in the second trial small yield increases of pepper and tomato occurred. In a greenhouse trial, incorporation of CR‐371 into a methyl cellulose seed coat gave similar control of root‐knot nematode on tomato as compared to CR‐371 applied as a drench. CR‐371‐treated strawberry plants also had smaller populations of Pratylenchus penetrans in roots in a greenhouse trial in Massachusetts.  相似文献   

9.
A split-root technique was used to examine the interaction between Pratylenchus penetrans and the cortical root-rotting pathogen Rhizoctonia fragariae in strawberry black root rot. Plants inoculated with both pathogens on the same half of a split-root crown had greater levels of root rot than plants inoculated separately or with either pathogen alone. Isolation of R. fragariae from field-grown roots differed with root type and time of sampling. Fungal infection of structural roots was low until fruiting, whereas perennial root colonization was high. Isolation of R. fragariae from feeder roots was variable, but was greater from feeder roots on perennial than from structural roots. Isolation of the fungus was greater from structural roots with nematode lesions than from non-symptomatic roots. Rhizoctonia fragariae was a common resident on the sloughed cortex of healthy perennial roots. From this source, the fungus may infect additional roots. The direct effects of lesion nematode feeding and movement are cortical cell damage and death. Indirect effects include discoloration of the endodermis and early polyderm formation. Perhaps weakened or dying cells caused directly or indirectly by P. penetrans are more susceptible to R. fragariae, leading to increased disease.  相似文献   

10.
Infection of strawberry plants with binucleate Rhizoctonia spp. results in an increase in peroxidase activity and the appearance of new isoforms of the enzyme. In healthy and diseased roots of two different strawberry genotypes seven peroxidase isoenzymes were found. In healthy strawberry cv. Senga Sengana, which was moderately resistant to infection, four isoenzymes (1, 2, 5, and 6) were found. Moreover the activity of these isoenzymes was increased and three new isoenzymes (3, 4, and 7) were found in infected roots. In the strawberry hybrid 3/2/86/88/R, which is very susceptible to infection, only isoenzyme 2 was present in the roots of healthy plants. Following infection, the activity of isoenzyme 2 was increased and five new isoenzymes (1, 4, 5, 6, and 7) were detectable. The results obtained indicate that strawberry resistance to binucleate Rhizoctonia may be correlated with peroxidase isoenzyme profile with particular reference to isoform 3, which is only present in infected roots of the moderately resistant cv., Senga Sengana.  相似文献   

11.
Detection of Phytophthora fragariae Hickman in roots of strawberry cultivar ‘Tenira’ by enzyme-linked immunosorbent assay (ELISA) Phytophthora fragariae Hickman is detected by ELISA in roots of strawberry cv. ‘Tenira’. Because of the high sensitivity of ELISA presence on fungal antigen was demonstrated before symptoms are detected in microscopical investigations.  相似文献   

12.
Trials conducted under glasshouse conditions showed that control of Otiorhynchus sulcatus larvae in strawberry plants can be effective using Steinernema carpocapsae and Heterorhabditis megidis, given that temperature and moisture extremes are avoided. In field experiments, the double line T-Tape® drip irrigation system performed better than the single line T-Tape® system, effectively distributing the nematodes along and across strawberry raised beds, and placing them close to the root zone where O. sulcatus larvae feed. As soil temperatures are satisfactory for nematode infectivity from late spring to early autumn, nematode applications were aimed at late instar larvae during spring, and early instar larvae during summer. Late summer field treatment with S. carpocapsae induced 49.5% reduction of the early instar larvae, and field application of the same nematode species in late spring resulted in 65% control of late instar larvae. In the same trial, spring application of H. megidis caused 26% mortality of late instar larvae of O. sulcatus.  相似文献   

13.
Plant-nematode populations associated with uncultivated vegetation, adjacent strawberry plants, and alternate crop sites were studied at three locations in Minnesota. At one site (Forest Lake), Paratylenchus projectus, Meloidogyne hapla, and Pratylenchus tenuis were frequently associated with the roots of native vegetation. These nematode species were also present in adjacent strawberry beds. Among alternate crops observed, oats and muskmelon usually supported the fewest nematodes although moderate densities of Xiphinema americanum and P. tenuis were found at one location in plots planted to oats. Pratylenchus tenuis was also found on rye at one location.  相似文献   

14.
15.
Cultivated strawberry, one of the major fruit crops worldwide, is an evergreen plant with shallow root system, and thus sensitive to environmental changes, including drought stress. To investigate the effect of 5-aminolevulinic acid (ALA), a new environment-friendly plant growth regulator, on strawberry drought tolerance and its possible mechanisms, we treated strawberry (Fragaria × annanasa Duch. cv. ‘Benihoppe’) with 15% polyethylene glycol 6000 to simulate osmotic stress with or without 10 mg l−1 ALA. We found that ALA significantly alleviated PEG-inhibited plant growth and improved water absorption and xylem sap flux, indicating ALA mitigates the adverse effect of osmotic stress on strawberry plants. Gas exchange and chlorophyll fluorescence analysis showed that ALA mitigated PEG-induced decreases of Pn, Gs, Tr, Pn/Ci, photosystem I and II reaction center activities, electron transport activity, and photosynthetic performance indexes. Equally important, ALA promoted PEG-increased antioxidant enzyme activities and repressed PEG-increased malondialdehyde and superoxide anion in both leaves and roots. Specially, ALA repressed H2O2 increase in leaves, but stimulated it in roots. Furthermore, ALA repressed abscisic acid (ABA) biosynthesis and signaling gene expressions in leaves, but promoted those in roots. In addition, ALA blocked PEG-downregulated expressions of plasmalemma and tonoplast aquaporin genes PIP and TIP in both leaves and roots. Taken together, ALA effectively enhances strawberry drought tolerance and the mechanism is related to the improvement of water absorption and conductivity. The tissue-specific responses of ABA biosynthesis, ABA signaling, and H2O2 accumulation to ALA in leaves and roots play key roles in ALA-improved strawberry tolerance to osmotic stress.  相似文献   

16.
Strains of Streptomyces were tested for their ability to reduce population densities of the root-lesion nematode (RLN), Pratylenchus penetrans, in roots of alfalfa (Medicago sativa) in growth chamber assays. Previously, these strains were shown to suppress potato scab disease, caused by Streptomyces scabies, in field experiments and to inhibit in vitrogrowth of a wide range of plant-pathogenic fungi and bacteria. Inoculation with Streptomyces at planting significantly reduced RLN population densities in roots of both susceptible and resistant alfalfa varieties grown in either heat-treated or untreated soil. Reductions in RLN population densities were observed 6 weeks after nematode inoculation. Shoot dry matter was not affected by any treatment; root dry weight was reduced in Streptomycesplus nematode treatments compared to the nematode inoculation alone in some experiments but was not affected by Streptomyces when RLN was absent. Mutant strains not producing antibiotics in vitro also reduced RLN population densities in alfalfa roots and all strains maintained high population densities after inoculation into heat-treated soil and on alfalfa roots. These strains may be useful in multi-crop, multi-pathogen management programs to augment genetic resistance to plant diseases.  相似文献   

17.
In pot tests, Longidorus elongatus (de Man) populations increased rapidly on Fragaria vesca, Stellaria media, Mentha sativa and Lolium perenne and slightly on Brassica rapa (turnip var. White globe) and on Ribes nigrum; but on Rubus idaeus populations declined at the same rate as in fallow soil. Raspberry ringspot (RRV) and tomato black ring (TBRV) viruses were readily transmitted by L. elongatus to S. media, TBRV only was transmitted to L. perenne, and M. sativa became infected with neither virus. RRV was transmitted to R. idaeus var. Mailing Jewel, on which the nematode fed but evidently did not reproduce. In a field experiment L. perenne and Fragaria ananassa (strawberry) vars. Huxley and Redgauntlet were shown to be good hosts for L. elongatus and R. idaeus (raspberry) vars. Lloyd George and Mailing Jewel were confirmed as non-hosts, together with Rheum rhaponticum (rhubarb). Two periods of egg laying were detected each year in the Redgauntlet strawberry plots and these coincided with the growth of young roots during the late spring and autumn. The wide host range of L. elongatus among cultivated plants and weeds, together with its ability to survive long periods without food, precludes the use of crop rotation as a means of control. Chemical soil sterilization is considered the most effective means of control because it can greatly decrease L. elongatus populations and as the nematode multiplies slowly, even on favourable host plants, several years are likely to elapse before populations become large enough to spread viruses effectively from infector plants to susceptible crops.  相似文献   

18.
根系分泌物和凋落物为土壤食物网提供了基础的养分资源。然而,不同树种纯林和混交林地下根系和地上凋落物对土壤线虫群落的影响机制尚不清楚。2019年9月在广西凭祥热带林业实验中心选取格木(Erythrophleum fordii Oliv.)纯林、马尾松(Pinus massoniana Lamb.)纯林和格木×马尾松混交林3种林分类型,分别设置对照、阻断乔木根系、去除地上凋落物和阻断乔木根系并去除地上凋落物四组实验处理,于2021年3月对3种林分类型不同处理下的土壤线虫群落和土壤理化性质进行了调查。研究结果表明,无论哪种林分类型,阻断根系改变了土壤线虫群落的营养类群组成,显著降低了食真菌线虫相对多度,增加了植物寄生线虫相对多度;去除凋落物显著降低了土壤线虫密度、类群数、线虫通路比值和结构指数,增加了基础指数,表明去除凋落物降低了土壤食物网的稳定性。无论哪种林分类型,人工林中树木地下根系输入是构建土壤线虫群落营养类群组成的主要驱动因素,地上凋落物在维持土壤食物网稳定性方面发挥着重要的作用。此外,阻断根系和去除凋落物对混交林中土壤线虫群落没有显著的影响,表明含固氮树种的格木×马尾松混交林比人工...  相似文献   

19.
Hop plants became infected with the hop strain of arabis mosaic virus (AMV(H)) when grown in hopfield and woodland soil in which infected plants had been growing. Infection occurred in soil infested with the dagger nematode Xiphinema diversicaudatum, but neither in uninfested soil nor in soil previously heated to kill nematodes. X. diversicaudatum transferred direct from hop soils transmitted AMV(H) to young herbaceous plants and to hop seedlings; some of the hop seedlings developed nettlehead disease. A larger proportion of plants was infected using X. diversicaudatum obtained from a woodland soil and then given access to the roots of hop or herbaceous plants infected with AMV(H). AMV(H) was transmitted by adults and by larvae, in which the virus persisted for at least 36 and 29 wk, respectively. Difficulties were encountered in detecting AMV(H) in infected hop plants, due partly to the delay in virus movement from roots to shoots. Infection of hop shoots was seldom detected until the year after the roots were infested and sometimes nettlehead symptoms did not appear until the third year. Isolates of arabis mosiac virus from strawberry did not infect hop. The results are discussed in relation to the etiology and control of nettlehead and related diseases of hop.  相似文献   

20.
Abstract

Our study was carried out in bench rhizotrons using the Camarosa variety of strawberry (Fragaria × ananassa Duch.), by exciding the apex of fast-growing primary roots at two distances (1 or 8 cm) from the apex. It was demonstrated that new lateral meristems were rapidly induced by excision of the root apex at either distance; after 24 h, histone H4 in situ hybridisation detected groups of cell-organising root primordia just a few millimetres below the cut. After a further 24 h, new lateral roots were about to protrude from the original root. Results show that lateral roots can be formed anywhere along the primary roots of strawberry plants from a few stem cells distributed along the pericycle close to the protoxylem arches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号