首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holthausen JT  Wyman C  Kanaar R 《DNA Repair》2010,9(12):1264-1272
Homologous recombination, the exchange of DNA strands between homologous DNA molecules, is involved in repair of many structural diverse DNA lesions. This versatility stems from multiple ways in which homologous DNA strands can be rearranged. At the core of homologous recombination are recombinase proteins such as RecA and RAD51 that mediate homology recognition and DNA strand exchange through formation of a dynamic nucleoprotein filament. Four stages in the life cycle of nucleoprotein filaments are filament nucleation, filament growth, homologous DNA pairing and strand exchange, and filament dissociation. Progression through this cycle requires a sequence of recombinase-DNA and recombinase protein-protein interactions coupled to ATP binding and hydrolysis. The function of recombinases is controlled by accessory proteins that allow coordination of strand exchange with other steps of homologous recombination and that tailor to the needs of specific aberrant DNA structures undergoing recombination. Accessory proteins are also able to reverse filament formation thereby guarding against inappropriate DNA rearrangements. The dynamic instability of the recombinase-DNA interactions allows both positive and negative action of accessory proteins thereby ensuring that genome maintenance by homologous recombination is not only flexible and versatile, but also accurate.  相似文献   

2.
Cultured animal cells rearrange foreign DNA very efficiently by homologous recombination. The individual steps that constitute the mechanism(s) of homologous recombination in transfected DNA are as yet undefined. In this study, we examined the topological requirements by using the genome of simian virus 40 (SV40) as a probe. By assaying homologous recombination between defective SV40 genomes after transfection into CV1 monkey cells, we showed that linear molecules are preferred substrates for homologous exchanges, exchanges are distributed around the SV40 genome, and the frequency of exchange is not diminished significantly by the presence of short stretches of non-SV40 DNA at the ends. These observations are considered in relation to current models of homologous recombination in mammalian cells, and a new model is proposed. The function of somatic cell recombination is discussed.  相似文献   

3.
Recombinational repair is a well conserved DNA repair mechanism present in all living organisms. Repair by homologous recombination is generally accurate as it uses undamaged homologous DNA molecule as a repair template. In Escherichia coli homologous recombination repairs both the double-strand breaks and single-strand gaps in DNA. DNA double-strand breaks (DSB) can be induced upon exposure to exogenous sources such as ionizing radiation or endogenous DNA-damaging agents including reactive oxygen species (ROS) as well as during natural biological processes like conjugation. However, the bulk of double strand breaks are formed during replication fork collapse encountering an unrepaired single strand gap in DNA. Under such circumstances DNA replication on the damaged template can be resumed only if supported by homologous recombination. This functional cooperation of homologous recombination with replication machinery enables successful completion of genome duplication and faithful transmission of genetic material to a daughter cell. In eukaryotes, homologous recombination is also involved in essential biological processes such as preservation of genome integrity, DNA damage checkpoint activation, DNA damage repair, DNA replication, mating type switching, transposition, immune system development and meiosis. When unregulated, recombination can lead to genome instability and carcinogenesis.  相似文献   

4.
This work presents a model describing the rate of recombination between homologous segments of DNA stably integrated into the genome of cultured cells. The model has been applied to rat cell lines carrying the polyomavirus middle T oncogene and a functional origin of viral DNA replication. Introduction of the gene coding for the polyoma large T antigen or the SV40 large T antigen into cells by DNA transfection promotes homologous recombination in the resident viral inserts with rates varying between 0.1 x 10(-3) and 3.7 x 10(-1) per cell generation.  相似文献   

5.
Targeted modification of mammalian genomes   总被引:5,自引:0,他引:5  
The stable and site-specific modification of mammalian genomes has a variety of applications in biomedicine and biotechnology. Here we outline two alternative approaches that can be employed to achieve this goal: homologous recombination (HR) or site-specific recombination. Homologous recombination relies on sequence similarity (or rather identity) of a piece of DNA that is introduced into a host cell and the host genome. In most cell types, the frequency of homologous recombination is markedly lower than the frequency of random integration. Especially in somatic cells, homologous recombination is an extremely rare event. However, recent strategies involving the introduction of DNA double-strand breaks, triplex forming oligonucleotides or adeno-associated virus can increase the frequency of homologous recombination.

Site-specific recombination makes use of enzymes (recombinases, transposases, integrases), which catalyse DNA strand exchange between DNA molecules that have only limited sequence homology. The recognition sites of site-specific recombinases (e.g. Cre, Flp or ΦC31 integrase) are usually 30–50 bp. In contrast, retroviral integrases only require a specific dinucleotide sequence to insert the viral cDNA into the host genome. Depending on the individual enzyme, there are either innumerable or very few potential target sites for a particular integrase/recombinase in a mammalian genome. A number of strategies have been utilised successfully to alter the site-specificity of recombinases. Therefore, site-specific recombinases provide an attractive tool for the targeted modification of mammalian genomes.  相似文献   


6.
The role played by phytohormone signaling in the modulation of DNA repair gene and the resulting effects on plant adaptation to genotoxic stress are poorly investigated. Information has been gathered using the Arabidopsis ABA (abscisic acid) overly sensitive mutant abo4-1, defective in the DNA polymerase ε function that is required for DNA repair and recombination. Similarly, phytohormone-mediated regulation of the Ku genes, encoding the Ku heterodimer protein involved in DNA repair, cell cycle control and telomere homeostasis has been demonstrated, highlighting a scenario in which hormones might affect genome stability by modulating the frequency of homologous recombination, favoring plant adaptation to genotoxic stress. Within this context, the characterisation of Arabidopsis AtKu mutants allowed disclosing novel connections between DNA repair and phytohormone networks. Another intriguing aspect deals with the emerging correlation between plant defense response and the mechanisms responsible for genome stability. There is increasing evidence that systemic acquired resistance (SAR) and homologous recombination share common elements represented by proteins involved in DNA repair and chromatin remodeling. This hypothesis is supported by the finding that volatile compounds, such as methyl salicylate (MeSA) and methyl jasmonate (MeJA), participating in the plant-to-plant communication can trigger genome instability in response to genotoxic stress agents. Phytohormone-mediated control of genome stability involves also chromatin remodeling, thus expanding the range of molecular targets. The present review describes the most significant advances in this specific research field, in the attempt to provide a better comprehension of how plant hormones modulate DNA repair proteins as a function of stress.  相似文献   

7.
Molecular mechanisms of exon shuffling: illegitimate recombination   总被引:5,自引:0,他引:5  
van Rijk A  Bloemendal H 《Genetica》2003,118(2-3):245-249
Illegitimate recombination (IR) is a process that takes place far more often than homologous recombination and is characterized by the recombination between non-homologous or short homologous sequences. The consequences of IR frequently emerge after the introduction of DNA in cell lines because it more frequently integrates in non-homologous than in homologous regions of the host genome. As a result, unexpected truncated or elongated products may be found. By not discarding those products as transfection artifacts, but by studying how they are generated, it might elucidate a possible molecular mechanism of IR. Here we review the current literature describing different mechanisms by which non-homologous DNA recombination can be induced.  相似文献   

8.
Double-strand DNA breaks (DSBs) cause cell death and genome instability. Homologous recombination is a major DSB repair pathway that operates by forming joint molecules with homologous DNA sequences, which are used as templates to achieve accurate repair. In eukaryotes, Rad51 protein (RecA homolog) searches for homologous sequences and catalyzes the formation of joint molecules (D-loops). Once joint molecules have been formed, DNA polymerase extends the 3' single-stranded DNA tails of the broken chromosome, restoring the lost information. How joint molecules subsequently dissociate is unknown. We reconstituted DSB repair in vitro using purified human homologous recombination proteins and DNA polymerase eta. We found that Rad54 protein, owing to its ATP-dependent branch-migration activity, can cause dissociation of joint molecules. These results suggest a previously uncharacterized mechanism of DSB repair in which Rad54 branch-migration activity plays an important role.  相似文献   

9.
Deinococcus radiodurans exhibits extraordinary resistance to the lethal effect of DNA-damaging agents, a characteristic attributed to its highly proficient DNA repair capacity. Although the D. radiodurans genome is clearly devoid of recBC and addAB counterparts as RecA mediators, the genome possesses all genes associated with the RecFOR pathway. In an effort to gain insights into the role of D. radiodurans RecFOR proteins in homologous recombination, we generated recF, recO and recR disruptant strains and characterized the disruption effects. All the disruptant strains exhibited delayed growth relative to the wild-type, indicating that the RecF, RecO and RecR proteins play an important role in cell growth under normal growth conditions. A slight reduction in transformation efficiency was observed in the recF and recO disruptant strains compared to the wild-type strain. Interestingly, disruption of recR resulted in severe reduction of the transformation efficiency. On the other hand, the recF disruptant strain was the most sensitive phenotype to γ rays, UV irradiation and mitomycin C among the three disruptants. In the recF disruptant strain, the intracellular level of the LexA1 protein did not decrease following γ irradiation, suggesting that a large amount of the RecA protein remains inactive despite being induced. These results demonstrate that the RecF protein plays a crucial role in the homologous recombination repair process by facilitating RecA activation in D. radiodurans. Thus, the RecF and RecR proteins are involved in the RecA activation and the stability of incoming DNA, respectively, during RecA-mediated homologous recombination processes that initiated the ESDSA pathway in D. radiodurans. Possible mechanisms that involve the RecFOR complex in homologous intermolecular recombination and homologous recombination repair processes are also discussed.  相似文献   

10.
During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.  相似文献   

11.
When DNA double-strand breaks occur, the cell cycle stage has a major influence on the choice of the repair pathway employed. Specifically, nonhomologous end joining is the predominant mechanism used in the G1 phase of the cell cycle, while homologous recombination becomes fully activated in S phase. Studies over the past 2 decades have revealed that the aberrant joining of replication-associated breaks leads to catastrophic genome rearrangements, revealing an important role of DNA break repair pathway choice in the preservation of genome integrity. 53BP1, first identified as a DNA damage checkpoint protein, and BRCA1, a well-known breast cancer tumor suppressor, are at the center of this choice. Research on how these proteins function at the DNA break site has advanced rapidly in the recent past. Here, we review what is known regarding how the repair pathway choice is made, including the mechanisms that govern the recruitment of each critical factor, and how the cell transitions from end joining in G1 to homologous recombination in S/G2.  相似文献   

12.
In prokaryotes the genome is organized in a dynamic structure called the nucleoid, which is embedded in the cytoplasm. We show here that in the archaeon Haloferax volcanii, compaction and reorganization of the nucleoid is induced by stresses that damage the genome or interfere with its replication. The fraction of cells exhibiting nucleoid compaction was proportional to the dose of the DNA damaging agent, and results obtained in cells defective for nucleotide excision repair suggest that breakage of DNA strands triggers reorganization of the nucleoid. We observed that compaction depends on the Mre11‐Rad50 complex, suggesting a link to DNA double‐strand break repair. However, compaction was observed in a radA mutant, indicating that the role of Mre11‐Rad50 in nucleoid reorganisation is independent of homologous recombination. We therefore propose that nucleoid compaction is part of a DNA damage response that accelerates cell recovery by helping DNA repair proteins to locate their targets, and facilitating the search for intact DNA sequences during homologous recombination.  相似文献   

13.
14.
基因组编辑技术能够实现基因组的精确修饰和改造,是后基因组时代研究基因功能和遗传信息的主要手段。传统的基因打靶技术通过低效率的细胞自发同源重组实现目的基因的定点修饰。真核细胞中DNA双链断裂介导的同源重组效率远高于自发同源重组,利用人工核酸内切酶特异性地在基因组靶序列处引入双链断裂,通过提供适当形式的、含有一定长度同源臂的供体DNA,能够实现相对高效的基因组靶向编辑。本文系统总结了环状质粒、线性化质粒、聚合酶链式反应产物及单链寡聚脱氧核苷酸4种类型的供体DNA在基因组精确编辑研究中的应用及候选原则,以期为以后相关研究中供体DNA的选择、设计提供参考和借鉴。  相似文献   

15.
Stalled replication forks pose a serious threat to genome integrity. To overcome the catastrophic consequences associated with fork demise, translesion synthesis (TLS) polymerases such as poleta promote DNA synthesis past lesions. Alternatively, a stalled fork may collapse and undergo repair by homologous recombination. By using fractionated cell extracts and purified recombinant proteins, we show that poleta extends DNA synthesis from D loop recombination intermediates in which an invading strand serves as the primer. Extracts from XP-V cells, which are defective in poleta, exhibit severely reduced D loop extension activity. The D loop extension activity of poleta is unusual, as this reaction cannot be promoted by the replicative DNA polymerase delta or by other TLS polymerases such as poliota. Moreover, we find that poleta interacts with RAD51 recombinase and RAD51 stimulates poleta-mediated D loop extension. Our results indicate a dual function for poleta at stalled replication forks: the promotion of translesion synthesis and the reinitiation of DNA synthesis by homologous recombination repair.  相似文献   

16.
Rad54, a Jack of all trades in homologous recombination   总被引:12,自引:0,他引:12  
Tan TL  Kanaar R  Wyman C 《DNA Repair》2003,2(7):787-794
Homologous recombination mediates the transfer or exchange of genetic information between homologous DNA molecules. It plays important roles in central processes in the cell such as genome duplication and DNA damage repair. Recent experiments reveal the surprising versatility of one of its central actors, the Rad54 protein.  相似文献   

17.
RecA and its ubiquitous homologs are crucial components in homologous recombination. Besides their eukaryotic nuclear counterparts, plants characteristically possess several bacterial-type RecA proteins localized to chloroplasts and/or mitochondria, but their roles are poorly understood. Here, we analyzed the role of the only mitochondrial RecA in the moss Physcomitrella patens. Disruption of the P. patens mitochondrial recA gene RECA1 caused serious defects in plant growth and development and abnormal mitochondrial morphology. Analyses of mitochondrial DNA in disruptants revealed that frequent DNA rearrangements occurred at multiple loci. Structural analysis suggests that the rearrangements, which in some cases were associated with partial deletions and amplifications of mitochondrial DNA, were due to aberrant recombination between short (<100 bp) direct and inverted repeats in which the sequences were not always identical. Such repeats are abundant in the mitochondrial genome, and interestingly many are located in group II introns. These results suggest that RECA1 does not promote but rather suppresses recombination among short repeats scattered throughout the mitochondrial genome, thereby maintaining mitochondrial genome stability. We propose that RecA-mediated homologous recombination plays a crucial role in suppression of short repeat-mediated genome rearrangements in plant mitochondria.  相似文献   

18.
19.
Mammalian RAD51 protein plays essential roles in DNA homologous recombination, DNA repair and cell proliferation. RAD51 activities are regulated by its associated proteins. It was previously reported that a ubiquitin-like protein, UBL1, associates with RAD51 in the yeast two-hybrid system. One function of UBL1 is to covalently conjugate with target proteins and thus modify their function. In the present study we found that non-conjugated UBL1 forms a complex with RAD51 and RAD52 proteins in human cells. Overexpression of UBL1 down-regulates DNA double-strand break-induced homologous recombination in CHO cells and reduces cellular resistance to ionizing radiation in HT1080 cells. With or without overexpressed UBL1, most homologous recombination products arise by gene conversion. However, overexpression of UBL1 reduces the fraction of bidirectional gene conversion tracts. Overexpression of a mutant UBL1 that is incapable of being conjugated retains the ability to inhibit homologous recombination. These results suggest a regulatory role for UBL1 in homologous recombination.  相似文献   

20.
UvrD, a highly conserved helicase involved in mismatch repair, nucleotide excision repair (NER), and recombinational repair, plays a critical role in maintaining genomic stability and facilitating DNA lesion repair in many prokaryotic species. In this report, we focus on the UvrD homolog in Helicobacter pylori, a genetically diverse organism that lacks many known DNA repair proteins, including those involved in mismatch repair and recombinational repair, and that is noted for high levels of inter- and intragenomic recombination and mutation. H. pylori contains numerous DNA repeats in its compact genome and inhabits an environment rich in DNA-damaging agents that can lead to increased rearrangements between such repeats. We find that H. pylori UvrD functions to repair DNA damage and limit homologous recombination and DNA damage-induced genomic rearrangements between DNA repeats. Our results suggest that UvrD and other NER pathway proteins play a prominent role in maintaining genome integrity, especially after DNA damage; thus, NER may be especially critical in organisms such as H. pylori that face high-level genotoxic stress in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号