首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CATION MODULATION OF SYNAPTOSOMAL RESPIRATION   总被引:16,自引:14,他引:2  
Abstract— Synaptosomes were prepared from the cerebral cortex of the adult rat by a rapid technique, involving the use of centrifugation in a Ficoll-sucrose discontinuous gradient. Adequate respiratory control ratios were obtained with glutamate and succinate plus rotenone. The addition of Na+ to the incubation medium stimulated synaptosomal, State-4 respiration, with a half-maximal response at 15 mM Na+. The stimulation by Na+ was inhibited by atractylate, oligomycin, ouabain or EDTA. A cooperative interaction between Na+ and low concentrations of Mg2+ was observed. A significant proportion (39 per cent) of the total Na-K ATPase (EC 3.6.1.4) activity in the discontinuous gradient was localized in the synaptosomal fraction. In the absence of exogenous Mg2+, Na+ induced a 64 per cent stimulation of the synaptosomal ATPase activity which was sensitive to ouabain. Such stimulation of ATP hydrolysis would account for the formation of increased amounts of ADP, with consequent recycling to ATP through adequately controlled oxidative phosphorylation. These observations demonstrate a significant role for transmembrane cationic gradients in the control of synaptosomal respiration and mitochondrial oxidative phosphorylation. The preparation exhibits moderate respiratory control and should prove useful in studies of integrated mitochondrial oxidative metabolism and neuronal membrane function.  相似文献   

2.
Mg2+- and Ca2+-uptake was measured in dark-grown oat seedlings ( Avena sativa L. cv. Brighton) cultivated at two levels of mineral nutrition. In addition the stimulation of the ATPase activity of the microsomal fraction of the roots by Mg2+ was measured. Ca2+-uptake by the roots was mainly passive. Mg2+-uptake mainly active; the passive component of Mg2+-uptake was accompanied by Ca2+-efflux up to 60% of the Ca2+ present in the roots.
In general Mg2+ -uptake of oat roots was biphasic. The affinity of the second phase correspond well with that of the Mg2+-stimulation of the ATPase activity, in low-salt roots as well as in high-salt roots and in roots of plants switched to the other nutritional condition. Linear relationships were observed when [phase 2] Mg2+-uptake was plotted against Mg2+-stimulation of the ATPase activity of the microsomal fraction of the roots. In 5 days old high-salt plants 1 ATP (hydrolysed in the presence of Mg2+ J corresponded with active uptake of a single Mg2+ ion, but in older high-salt roots and in low-salt roots more ATP was hydrolysed per net uptake of a Mg2+ ion. The results are discussed against the background of regulation of the Mg2+-level of the cytoplasm of root cells by transport of Mg2+ by a Mg2+-ATPase to the vacuole, to the xylem vessels, and possibly outwards.  相似文献   

3.
Exocytic activation of gastric parietal cells represents a massive transformation. We studied a step in this process, homotypic fusion of H,K-ATPase-containing tubulovesicles, using R18 dequenching. Ca2+ and Mg2+/ATP each caused dramatic dequenching, reflecting a change in R18 distribution from 5% to 65–90% of the assay's membranes in 2.5 min. These stimuli also triggered fusion between tubulovesicles and liposomes. Independent confirmation that dequenching represented membrane fusion was established by separating tubulovesicle–liposome fusion products on density gradients. Only agents that trigger fusion allowed the transmembrane H,K-ATPase to move to low-density fractions along with R18. EC50 for Ca2+-triggered fusion was 150 n m and for Mg2+/ATP-triggered fusion 1 m m , the latter having a Hill coefficient of 2.5. ATP-triggered fusion was specific for Mg2+/ATP, required ATP hydrolysis, and was insensitive to inhibition of NSF and/or H,K-ATPase. Fusion initiated by either trigger caused tubulovesicles to become resistant to subsequent challenge by either trigger. Ca2+-and Mg2+/ATP-triggered fusion required protein component(s) in tubulovesicles, though this was required in only one of the fusing membranes since tubulovesicles fused well with liposomes containing no proteins. Our data suggest that exocytosis in parietal cells is triggered by separate but interacting pathways and is regulated by self-inhibition.  相似文献   

4.
Nitrate reductase (NR, EC 1.6.6.1) activity in attached cucumber ( Cucumis sativus L. cv. Ashley) leaves changed rapidly and reversibly during light/dark transitions, especially when assayed in the presence of free Mg2+. Light decreased and darkness increased the sensitivity of the enzyme to inhibition by Mg2+. The NR activation state, i.e. activity in the presence of Mg2+ relative to activity in the absence of Mg2+, increased with light intensity up to 400 μmol m−2 s−1 PAR (photosynthetically active radiation). When a desalted crude extract from illuminated leaves was preincubated with ATP, NR was gradually inactivated. Inactivation was only observed when activity was assayed in the presence of Mg2+. The ATP-inactivated NR remained inactive after removing the excess of ATP by gel filtration and it did not occur in partially purified NR preparations. NR extracted from darkened attached leaves was markedly activated when preincubated with 5'-AMP. These results support the view that inactivation/activation of cucumber-leaf NR in response to light/dark signals most likely involves phosphorylation/dephosphorylation of the enzyme catalysed by endogenous proteins. A substantial activation of NR by preincubation with 5'-AMP was also observed when activity was assayed in the absence of Mg2+, thus indicating that 5'-AMP can directly activate NR. Irradiation of an extract from darkened leaves containing FAD promoted a partial activation of NR. This effect was observed both in the +Mg2+ and in the −Mg2+ assay, indicating that activation was caused by photoexcited flavin and did not involve dephosphorylation of the enzyme.  相似文献   

5.
Abstract— The effects of two sulfhydryl reagents, PCMBS ( p -chloromercuribenzene sulfonic acid) and NEM ( N -ethylmaleimide) on microtubule-associated Mg2+ -and Ca2+ -ATPase activity were studied in a MTP (microtubule proteins) preparation and in a MAP (microtubule-associated proteins) fraction. In the MTP preparation at pH 6.8, PCMBS stimulated the Mg2+ -ATPase activity at low concentrations and inhibited at higher, whereas the Ca2+ -ATPdse activity was only inhibited. NEM affected the activity in a similar way. At pH 8.0 PCMBS was only inhibitory. NEM showed stimulatory effects over a broader concentration range.
Preincubation in the presence of ATP counteracted the stimulatory effects of both PCMBS and NEM on Mg2+ -ATPase at pH 6.8.
In the MAP fraction at pH 6.8 PCMBS and NEM caused similar but less pronounced effects on the Mg2+ -and Ca2+ -ATPase.
The results show that brain microtubule-associated ATPase activity is similar to dynein and myosin ATPases with respect to biphasic alteration by sulfhydryl reagents.  相似文献   

6.
Abstract: The effect of ATP, Mg2+, or MgATP on the release of luteinizing hormone-releasing hormone (LH-RH) from hypothalamic granules was examined under in vitro conditions. Granules, isolated from adult male hypothalami, were incubated at 37°C in a buffered (pH 7.8) medium containing 0.15 m -KCl. The addition of ATP to the incubation mixture did not stimulate the release of LH-RH. In contrast, the addition of MgATP stimulated the release of LH-RH, the release being 62% greater than control. The addition of Mg2+ to the incubated granules also stimulated the release of LH-RH. However, the magnitude of this Mg2+-stimulated release of LH–RH was significantly ( P < 0.01) lower than that of the MgATP-stimulated release, indicating that ATP stimulates LH-RH release in a Mg2+-dependent manner. As both MgATP and Mg2+ alone stimulated LH-RH release, we characterized further these two release processes by incubating the granules under one of the following conditions: incubation at 4°C in a buffered medium containing 0.15 m -KCl or incubation at 37°C in a medium that does not contain KCl. Under these two incubation conditions, the MgATP-stimulated release of LH-RH was not manifested, whereas the Mg2+-stimulated release of LH-RH was manifested. On the basis of these differences, we propose that two different processes can lead to the release of LH-RH from isolated hypothalamic granules: one process involves ATP and Mg2+ (MgATP) and another process involves Mg2+ alone.  相似文献   

7.
Abstract— The hypothesis that the ATPase and phosphatidyhnositol (PI) kinase activities of chromaffin vesicle membranes are catalysed by same enzyme was investigated. The two activities exhibited entirely different responses to variations in Mg2+ or Mn2+ concentrations. In the presence of 1 mM ATP, maximal ATPase activity occurred with 1 mM Mg2+ while maximal PI kinase activity required 100 mM Mg2+ Similar differences were observed with Mn2+ with the exception that maximal ATPase activity occurred with 0.5 mM Mn2+ and maximal PI kinase activity occurred with 5 mM Mn2+ Mn2+ was more effective than Mg2+ in stimulating PI kinase activity at low concentrations, but at optimal concentrations of each, the maximal activity obtained with Mg2+ was 5-fold greater than the maximal activity obtained with Mn2+ The heat stabilities of the two enzymes are vastly different. At 50°C the ATPase activity of the intact membranes was stable for up to 20 min while the t l/2 of PI kinase was less than 2 min. After solubilization in Lubrol PX or at higher temperatures both enzymes were less heat stable, but PI kinase was still inactivated at a much greater rate than the ATPase. The evidence suggests that the ATPase and the PI kinase are different proteins.
The major phosphorylated product was diphosphatidylinositol and once formed, it was stable. Phosphorylation of membrane protein accounted for less than 10% of the total 32P-incorporated into chromaffin vesicles. SDS gel electrophoresis of the solubilized membranes showed the presence of at least 2 major phosphorylated high molecular weight components.  相似文献   

8.
Abstract— Endogenous protein phosphorylation has been studied during in vitro polymerization of microtubules by incubating a purified tubulin preparation at 37°C in the presence of radioactive ATP. At optimal conditions the rate of phosphorylation was found to follow the course of polymerization by a shift to a lower rate at the polymerization plateau.
Zn2+ at 0.5 m m was shown to stimulate phosphorylation, mainly of tubulin-associated proteins (mol wt 110,000 and 175,000,) and to a lesser extent of tubulin. The effect occurred at Zn2+-concentrations which induce formation of tubulin sheet polymers, which suggests that the state of aggregation of tubulin is of importance for the phosphorylation. In contrast to Zn2+, Mg2+ only increased phosphorylation of the high molecular weight proteins, and to a lesser degree. The stimulation by Zn2+ or Mg2+ was potentiated by cyclic AMP or cyclic GMP.
A low concentration of Zn2+ (5 μ m ) or cyclic GMP at 10 μ m inhibited phosphorylation, possibly by interaction with a co-existing protein phosphatase.  相似文献   

9.
Ca2+-sensitive Mg2+-dependent ATP phosphohydrolase (EC 3.6.1.3, ATPase) was extracted from the plain synaptic vesicle fractions that were virtually devoid of contamination. The protein pattern of the ATPase preparation on SDS polyacrylamide gel electrophoresis closely resembled that of actomyosin from skeletal muscle. The finding suggests that the main components of the ATPase are actin- and myosin-like proteins of the brain (stenin and neurin). Microsome and synaptosomal plasmalemma fractions were extracted under the same conditions to examine the possibility that the ATPase extracted derived from contaminating particulates. An entirely different ATPase was extracted from microsomes, and no protein from plasma membranes. Although Ca2+-sensitive Mg2+-dependent ATPase was extracted from coated vesicle fraction, the electrophoretic pattern was dissimilar to that of the ATPase from plain synaptic vesicle fractions. It may be inferred that the whole complex of neurostenin is located in plain synaptic vesicles from the brain.  相似文献   

10.
The human gene MRS2L encodes a mitochondrial protein distantly related to CorA Mg2+ transport proteins. Constitutive shRNA-mediated knockdown of hMRS2 in human HEK-293 cell line was found here to cause death. To further study its role in Mg2+ transport, we have established stable cell lines with conditionally expressing shRNAs directed against hMRS2L . The cells expressing shRNA for several generations exhibited lower steady-state levels of free mitochondrial Mg2+ ([Mg2+]m) and reduced capacity of mitochondrial Mg2+ uptake than control cells. Long-term expression of shRNAs resulted in loss of mitochondrial respiratory complex I, decreased mitochondrial membrane potential and cell death. We conclude that hMrs2 is the major transport protein for Mg + uptake into mitochondria and that expression of hMrs2 is essential for the maintenance of respiratory complex I and cell viability.  相似文献   

11.
Abstract: The cellular localization of two Ca2+-dependent protein phosphorylation systems was investigated using the kainic acid lesioning technique for the selective destruction of neurons. In one of these systems, a crude synaptosomal (P2) fraction was preincubated with 32Pj for 30 min; the phosphorylation of several proteins was increased during a short subsequent incubation with veratridine plus Ca2+. In the second system, crude synaptosomal membranes isolated from the P2 fraction were incubated with [γ-32P]ATP; in this system, the phosphorylation of several proteins was increased in the presence of a "calcium-dependent regulator" plus Ca2+. Kainic acid lesioning greatly reduced the amount of Ca-+-dependent protein phosphorylation in both systems. The results indicate a predominantly neuronal localization for both Ca2+-dependent protein phosphorylation systems.  相似文献   

12.
CHARACTERISTICS OF D-GLUCOSAMINE UPTAKE BY RAT BRAIN SYNAPTOSOMES   总被引:1,自引:1,他引:0  
Abstract— The uptake of D-glucosamine by rat brain synaptosomes is studied as a function of time, temperature and synaptosomal protein and substrate concentrations. The rate of D-glucosamine uptake, after correcting for simple diffusion, obeys Michaelis-Menten kinetics. The apparent kinetic constants for the uptake process are Km = 2.5 0.8 m m , Vmax = 3.7 ± 1.2 nmol/mg protein/min. D-Glucose, D-mannose, 2-deoxy-D-glucose and 3-0-methyl-o-glucose are potent inhibitors of D-glucosamine uptake. 2-Deoxy-D-glucose and D-glucosamine inhibit the uptake of one another in a simple competitive manner, indicating their sharing of a common transport system. Cytochalasin B, phloretin and phloridzin are powerful competitive inhibitors of D-glucosamine uptake with apparent inhibitor constants ( K1 ) of 7.0 × 10-5, 2.3 × 10-3 and 0.4 mM, respectively. The uptake is unaffected by Na+, Li+ and Mg2+, partially inhibited by NH4+, Mn2+ and Ca2+, and slightly stimulated by PO4-ions. D-Glucosamine uptake is also sensitive to inhibition by several sulfhydryl reagents, thus implying the involvement of sulfhydryl groups in the transport process. The apparent affinity constants for synaptosomal transport for both D-glucosamine and 2-deoxy-D-glucose are about 4 times greater in 7-day-old than in the adult rat brains.  相似文献   

13.
Aims:  The ability to transform Vibrio spp. is limited by the extracellular nuclease that their cells secrete. The reported transformation efficiency of this organism is 102–105 transformants per microgram DNA. We tried different buffers and conditions, aiming to elevate its transformation efficiency.
Methods and Results:  MgCl2 and sucrose are often included in the washing and/or electroporation buffers to stabilize the cell membrane. However, Mg2+ is required for production and activity of the extracellular nuclease. A simple electroporation buffer lacking Mg2+ was found to increase transformation efficiency dramatically, to levels 50-fold more than the buffers containing Mg2+. To maintain the stability of the cell membranes, Mg2+ was replaced with high concentrations of sucrose, from 272 to 408 mmol l−1. With the new buffers, the transformation efficiency of Vibrio parahaemolyticus was increased to 2·2 × 106 transformants per microgram DNA.
Conclusions:  Mg2+ in the buffer adversely affected transformation of V. parahaemolyticus by electroporation. The cell membranes of vibrio can be stabilized by high concentration of sucrose when Mg2+ is absent.
Significance and Impact of the Study:  A greater transformation efficiency can facilitate the genetic analysis of an organism and its pathogenicity. Buffers lacking Mg2+ can be used for other nuclease-producing organisms.  相似文献   

14.
Plasmalemma was isolated from the roots of 2-week-old cucumber plants ( Cucumis sativus L. cv. Rhensk druv) by utilizing an aqueous polymer two-phase system with 6.5%:6.5% (w/w) Dextran T500 and polyethylene glycol (PEG) 3350 at pH 7.8. The plasmalemma fraction comprised ca 6% of the membrane proteins contained in the microsomal fraction. The specific activity of the plasma membrane marker enzyme (K+, Mg2+-ATPase) was 14- to 17-times higher in the upper (PEG-rich) than in the lower (Dextran-rich) phase, and the reverse was true for marker enzymes (cytochrome c oxidase, EC 1.9.3.1, and antimycin A-resistant NADPH cytochrome c reductase) of intracellular membranes. The ATPase was highly stimulated by the addition of detergent (Triton X-100), so that the isolated plasmalemma vesicles appear tightly sealed and in a right-side-out orientation. Further characterization of the ATPase activities showed a pH optimum at 6.0 in the presence of Mg2+. This optimum was shifted to pH 5.8 after addition of K+. K+ stimulated the ATPase activity below pH 6 and inhibited above pH 6. The ATPase activity was specific for ATP and sensitive to N,N-dicyclohexylcarbodiimide and sodium vanadate, with K+ enhancing the vanadate inhibition. The enzyme was insensitive to sodium molybdate, NO3, azide and oligomycin. No Ca2+-ATPase was detected, and even as little as 0.05 m M Ca2+ inhibited the Mg2+-ATPase activity.  相似文献   

15.
Abstract: Purified Torpedo synaptic vesicles contain ouabain-insensitive Mg2+τ and Ca2+-stimulated ATPase activity. The sidedness of the ATPase on the vesicular membranes was investigated. Addition of ATP and Mg2+ or Ca2+ to intact vesicles results in activation of the ATPase. Exposure of the vesicles to low concentrations of Lubrol-PX and Triton X-100, which do not solubilize the activity, results in the concurrent release of the vesicular contents and in an increase of the Mg2+-ATPase activity, whereas the Ca2+-dependent activity is drastically decreased. p -Chloromercuribenzene sulphonate (PCMBS) almost completely inhibits the activity of detergent-treated vesicles whereas that of the native material is only slightly affected. Tryptic digestion of intact vesicles and of vesicular ghosts results in partial reduction of the ATPase activity. These results suggest that the vesicles contain an outward oriented Ca2+/Mg2+ ATPase activity which can be modulated by detergents.  相似文献   

16.
Abstract— Myelin, synaptosomal and mitochondrial fractions obtained from homogenates of whole mouse brain contain K+ which can exchange with 42K+ at 2º in 0·32 m -sucrose. The content and rates of exchange of K+ were greater at pH 8·2 than at 6·1. In the synaptosomal preparations, the rates of exchange and content of 42K+ and K+ declined progressively with decreasing pH.
Of the total synaptosomal K+, 95 per cent could exchange with external 42K+. At pH 7·5, 20 per cent of the K+ and 78 per cent of the Na+ appeared to reside in osmotically insensitive pools. Synaptosomal K+ at 2º was slowly displaced by NaCl (0·18 m ) and the rate of exchange between 42K+ and K+ was retarded. KCI (0·18 m ) did not readily displace endogenous Na+. Synaptosomal K+ exchanged with exogenous K+ more rapidly than with exogenous Na+.
These observations have been discussed in terms of possible roles for ion exchange as the principal means by which K+ traverses the plasma membrane at 2º.  相似文献   

17.
Abstract: Nations were found to inhibit the uptake of L-tryptophan into synaptosomes with a shallow dose-response curve. Almost maximal inhibition was obtained with 10 mM-Na+. The divalent cations Ca2+ and Mg2+ were shown to be responsible for the increased uptake of L-tryptophan in the absence of Na+ ions. Other divalent cations also promoted tryptophan uptake under this condition (Ca2+ < Mg2+ < Mn2+ < Fe2+ < Zn2+ < Cu2+). It was concluded that monovalent chelate complexes were responsible for this enhancing effect. The measured L-tryptophan uptake was the net product of membrane bound and unbound tryptophan. Both bound and unbound tryptophan were increased in the presence of divalent cations. If no divalent cations were added to the incubation medium, Na+ ions decreased the unbound tryptophan but were without effect on bound tryptophan. Under these circumstances D-tryptophan had no effect on binding of the L-isomer and affected the transport of 1.-tryptophan only at very high does (100 x conc. L-tryptophan). These results suggest that I -tryptophan binds to a stereospecific transport carrier located in the synaptosomal membrane and that Na+ ions prevent the translocation of this carrier amino acid complex from the outer to the inner site of the neuronal membrane.  相似文献   

18.
The Mg2+-dependent activity of the tonoplast pyrophosphatase (PPase) was investigated by measuring proton transport and by using the acridine orange technique on intact vacuoles of the aquatic liverwort Riccia fluitans L. In solutions with both Mg2+ and pyrophosphate present, a number of complexes are formed, which could all influence the enzymatic and hence the transport activity of the PPase. Therefore, the individual concentrations of these complexes were calculated and their contributions to proton transport across the tonoplast were tested. From these experiments we conclude that Mg2+ has three different roles: (i) Mg2+ stimulates transport activity of the PPase. (ii) Mg2PPi inhibits PPase-mediated H+ transport, (iii) MgPPi* (= MgPPi2-+ MgHPPi-) is the substrate with an apparent K1/2= 5–10 μM, with no discrimination between MgPPi2- and MgHPPi-.  相似文献   

19.
Saul Puszkin  Soll Berl 《BBA》1972,256(3):695-709
1. Actin-like protein (neurin) has been separated from actomyosin-like protein (neurostenin) isolated from bovine brain. This was accomplished by gel filtration chromatography (Sephadex G-200) and by ultracentrifugation in a continuous sucrose gradient containing 0.6 M KI.

2. The actin-like protein stimulated the Mg2+-ATPase activity of muscle myosin.

3. It contained bound nucleotide which exchanged with free [14C]ATP.

4. It polymerized in the presence of 0.1 M KCl and 0.1 mM Mg2+ with release of Pi; increase in viscosity occurred upon dilution of the 0.6 M KI to 0.1 M.

5. The neurin reacted immunologically to form a single band with antiserum to neurostenin.

6. The neurin, similar to muscle actin, contained 3-methylhistidine.

7. The sedimentation constant of the protein was 2.8 S.  相似文献   


20.
ATP-induced Secretion in PC12 Cells and Photoaffinity Labeling of Receptors   总被引:2,自引:1,他引:1  
Abstract— Secretion of catecholamines by rat PC12 cells is strongly stimulated by extracellular ATP via a P2-type pur-inergic receptor. ATP-induced norepinephrine release was inhibited 80% when extracellular Ca2+ was absent. Only four nucleotides, ATP, ATPγS, benzoylbenzoyl ATP (BzATP), and 2-methylthio-ATP, gave substantial stimulation of norepinephrine release from PC12 cells. ATP-induced secretion was inhibited by Mg2+, and this inhibition was overcome by the addition of excess ATP suggesting that ATP4-was the active ligand. ATP-induced secretion of catecholamine release was enhanced by treatment of cells with pertussis toxin or 12- O -tetradecanoylphorbol 13-acetate. The stimulatory effects of 12- O -tetradecanoyl-phorbol 13-acetate and pertussis toxin on norepinephrine release were additive. After brief exposure of intact cells to the photoaffinity analog, [α-32P]BzATP, two major proteins of 44 and 50 kDa and a minor protein of 97 kDa were labeled. An excess of ATP-γS and BzATP but not GTP blocked labeling of the proteins by [32P]BzATP. Labeling of the 50-kDa protein was more sensitive to competition by 2-methylthio-ATP than the other labeled proteins, suggesting that the 50-kDa protein represents the P2 receptor responsible for ATP-stimulated secretion in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号