首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peripheral treatment with the serotonin releaser fenfluramine or the serotonin agonist quipazine abolished lordosis behavior in ovariectomized estradiol and progesterone-primed female guinea pigs. Quipazine was also effective when administered into a lateral cerebroventricle. The lowest dose of fenfluramine that induced myoclonus (10 mg/kg) was higher than the dose needed to inhibit lordosis (5 mg/kg). Therefore, it appears that myoclonus and lordosis are differentially sensitive to serotonin agonists. The effects of quipazine on lordosis were time dependent. Quipazine had no effect on lordosis when given prior to the onset of sexual receptivity. These data suggest that serotonin agonists might be effective only when progesterone has had sufficient time to induce sexual receptivity. Quipazine did not affect cytoplasmic progestin receptors in brain areas involved in steroid hormone effects on lordosis. This finding, and the finding that quipazine had no effect on lordosis when given prior to the onset of sexual receptivity, suggest increased serotonin transmission does not interfere with estrogen priming or sensitivity of hypothalamic cells to progesterone.  相似文献   

2.
The role of serotonin in mediating hypothalamic control of sexual behavior in estrone-primed ovariectomized (OVX) rats was studied by comparing the lordotic patterns following medial preoptic (MPOA) and arcuate-ventromedial (ARC-VM) infusions of serotonin (5-HT), methysergide (MS), and vehicle. In the initial experiments, low receptivity (preinfusion receptivity: mean lordosis/mount ratio = 0.164) was maintained by priming each animal with a low dose of estrone 48 hr prior to mating. The infusion of MS in either the MPOA or ARC-VM area resulted in a significant enhancement of lordotic behavior from initial low receptivity, 5-HT infusions were found to have no statistically significant effect upon lordotic behavior. In order to corroborate the findings observed in the low preinfusion receptivity protocol, OVX rats were primed with higher doses of estrone to maintain a high level of receptivity (preinfusion receptivity: mean lordosis/mount ratio = 0.787). Using this protocol, significant depressions in lordotic behavior were observed following MPOA or ARC-VM infusions of 5-HT, It was thus proposed that serotonergic receptors within the MPOA or ARC-VM areas have inhibitory effects upon lordotic behavior. In addition to the effects of 5-HT upon estrogen-induced sexual receptivity, serotonergic influences upon luteinizing hormone-releasing hormone (LRH)-facilitated mating behavior were also evaluated. Comparisons were made between the lordotic responses following MPOA or ARC-VM infusions of vehicle, LRH, or LRH with 5-HT in OVX rats primed with low doses of estrone. The infusion of LRH into the MPOA or ARC-VM significantly enhanced lordotic behavior above vehicle levels. However, the addition of 5-HT to the LRH infusate abolished this behavioral enhancement. These findings indicated that LRH and 5-HT have opposing effects within forebrain areas known to be important for the control of lordotic behavior.  相似文献   

3.
To investigate the role of serotonin (5-HT) receptor 1A or 7 in regulating lordosis behavior in female rats, ovariectomized rats were treated with 3 kinds of receptor agonists and lordosis behavior was observed. The injected agents were the selective 5-HT1A receptor agonist, buspirone (BUS), the highly selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin ((+/-)8-OH-DPAT), and the 5-HT1A and 5-HT7 receptor agonist, (R)-8-hydroxy-2-(di-n-propylamino)tetralin ((+)8-OH-DPAT). A behavioral test was performed after ovariectomy and subcutaneous implantation of a silicon tube containing estradiol. Female rats in which the lordosis quotient (LQ) was over 70 were intraperitoneally injected with several doses of these agents. As a result, in the BUS group, the dose of 3 mg/kg bw, but not 1 mg/kg was effective for suppressing lordosis. On the other hand, an inhibitory effect was observed from 0.25 mg/kg and 0.5 mg/kg in the (+)8-OH-DPAT and (+/-)8-OH-DPAT groups, respectively. In the time-course experiment, in all drug-treated groups, LQ decreased to lower than 20 after 15 min and low LQ continued for 1 hr at least. Measurement of locomotor activity using an infrared sensor system showed no relation between the decrease in lordosis by these agents and spontaneous locomotion. These results indicate that 5-HT1A is strongly involved in the lordosis-inhibiting circuit of the serotonin neurons.  相似文献   

4.
The theory that activation of serotonin type 2 (5-HT2) receptors facilitates lordosis behavior in the female rat was tested. The 5-HT2 antagonists pizotefin, cyproheptadine, metitepine, and ketanserin were found to inhibit lordosis behavior in ovariectomized rats that had been primed with estradiol benzoate and progesterone. Pipamperone was ineffective. The 5-HT2 agonist quipazine was ineffective alone, but it reversed the inhibitory effects of pizotefin, cyproheptadine, and ketanserin. It did not reverse the effects of metitepine. The results support the theory of a facilitatory role for 5-HT2 receptors in lordosis behavior.  相似文献   

5.
This study was aimed at testing the hypothesis that serotoninergic receptors in the locus coeruleus (LC) play a role in bacterial lipopolysaccharide-induced fever. To this end, 5-HT1A (WAY-100635; 3 microg/100 nL) and 5-HT2A (ketanserin; 2 microg/100 nL) antagonists were microinjected into the LC and body temperature was monitored by biotelemetry. Intra-LC microinjections of ketanserin or WAY-100635 caused no change in body temperature of euthermic animals. 5-HT2A antagonism abolished the first phase of the lipopolysaccharide-induced fever. Taken together, these results indicate that serotonin acting on 5-HT2A receptors in the LC mediates the first phase of the febrile response, whereas 5-HT1A receptors are not involved in the lipopolysaccharide-induced fever.  相似文献   

6.
Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform "masculinity", increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist alpha-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters.  相似文献   

7.
In recent years, there has been increasing evidence that serotonergic neurotransmission modulates a wide variety of experimentally induced seizures. Generally, agents that elevate extracellular serotonin (5-HT) levels, such as 5-hydroxytryptophan and serotonin reuptake blockers, inhibit both focal and generalized seizures, although exceptions have been described, too. Conversely, depletion of brain 5-HT lowers the threshold to audiogenically, chemically and electrically evoked convulsions. Furthermore, it has been shown that several anti-epileptic drugs increase endogenous extracellular 5-HT concentration. 5-HT receptors are expressed in almost all networks involved in epilepsies. Currently, the role of at least 5-HT(1A), 5-HT(2C), 5-HT(3) and 5-HT(7) receptor subtypes in epileptogenesis and/or propagation has been described. Mutant mice lacking 5-HT(1A) or 5-HT(2C) receptors show increased seizure activity and/or lower threshold. In general, hyperpolarization of glutamatergic neurons by 5-HT(1A) receptors and depolarization of GABAergic neurons by 5-HT(2C) receptors as well as antagonists of 5-HT(3) and 5-HT(7) receptors decrease the excitability in most, but not all, networks involved in epilepsies. Imaging data and analysis of resected tissue of epileptic patients, and studies in animal models all provide evidence that endogenous 5-HT, the activity of its receptors, and pharmaceuticals with serotonin agonist and/or antagonist properties play a significant role in the pathogenesis of epilepsies.  相似文献   

8.
The present study was designed to investigate the role of the 5-HT7 receptors in lordosis and compare the lordotic responses with 5-HT1A agent under the influence of different steroid-priming regimens in ovariectomized, non-receptive and receptive rats. 8-OH DPAT, a 5-HT1A agonist and 5-CT, a 5-HT7 agonist inhibited the lordosis differently in non-receptive and receptive rats, however, the response was attenuated in a dose-dependent manner following 5-CT treatment in the first two tests. Treatment with 5-HT1A antagonist, WAY 100 135 caused a protective effect which was evident in the second test only. Priming with 25 microg OB attenuated in the first test in non-receptive rats whereas the same dose repeated a similar pattern in receptive rats. The attenuation of LQ was evident in rats treated with 5-HT7 antagonist, SB 269970-A. This finding shows that WAY 100 135, a 5-HT1A antagonist has potency to attenuate inhibitory influence of 8-OH DPAT by enhancing lordosis behavior acutely in female rats with a low estrous state. Treatment with 5-CT and SB 269970-A as 5-HT7, agonist and antagonist, respectively, have mimicked 5-HT-mediated lordotic response as moderate affinity towards 5-HT1A receptors has been reported. This offers a comparable effect on lordosis as a result of the two 5-HT agents used.  相似文献   

9.
The selective serotonin reuptake inhibitor (SSRI), fluoxetine (Prozac®), is an effective antidepressant that is also prescribed for other disorders (e.g. anorexia, bulimia, and premenstrual dysphoria) that are prevalent in females. However, fluoxetine also produces sexual side effects that may lead patients to discontinue treatment. The current studies were designed to evaluate several predictions arising from the hypothesis that serotonin 1A (5-HT1A) receptors contribute to fluoxetine-induced sexual dysfunction. In rodent models, 5-HT1A receptors are potent negative modulators of female rat sexual behavior. Three distinct experiments were designed to evaluate the contribution of 5-HT1A receptors to the effects of fluoxetine. In the first experiment, the ability of the 5-HT1A receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635), to prevent fluoxetine-induced lordosis inhibition was examined. In the second experiment, the effects of prior treatment with fluoxetine on the lordosis inhibitory effect of the 5-HT1A receptor agonist, (±)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), were studied. In the third experiment, the ability of progesterone to reduce the acute response to fluoxetine was evaluated. WAY100635 attenuated the effect of fluoxetine; prior treatment with fluoxetine decreased 8-OH-DPAT's potency in reducing lordosis behavior; and progesterone shifted fluoxetine's dose-response curve to the right. These findings are consistent with the hypothesis that 5-HT1A receptors contribute to fluoxetine-induced sexual side effects.  相似文献   

10.
This study was carried out aiming to reach behavioral and neuropharmacological evidence of the permeability of the blood-brain barrier (BBB) to serotonin systemically administered in quails. Serotonin injected by a parenteral route (250-1000 microg x kg(-1), sc) elicited a sequence of behavioral events concerned with a sleeping-like state. Sleeping-like behaviors began with feather bristling, rapid oral movements, blinking and finally crouching and closure of the eyes. Previous administration of 5-HT2C antagonist, LY53857 (3 mg x kg(-1), sc) reduced the episodes of feather bristling and rapid oral movements significantly but without altering the frequency of blinking and closure of the eyes. Treatment with the 5-HT2A/2C antagonist, ketanserin (3 mg x kg(-1), sc) did not affect any of the responses evoked by the serotonin. Quipazine (5 mg x kg(-1), sc) a 5-HT2A/2C/3 agonist induced intense hypomotility, long periods of yawning-like and sleeping-like states. Previous ketanserin suppressed gaping responses and reduced hypomotility, rapid oral movements and bristling but was ineffective for remaining responses induced by quipazine. Results showed that unlike mammals, serotonin permeates the BBB and activates hypnogenic mechanisms in quails. Studies using serotoninergic agonist and antagonists have disclosed that among the actions of the serotonin, feather bristling, rapid oral movements and yawning-like state originated from activation of 5-HT2 receptors while blinking and closure of the eyes possibly require other subtypes of receptors.  相似文献   

11.
Autoregulatory mechanisms affecting serotonin [5-hydroxytryptamine (5-HT)] release and synthesis during the early period of development were investigated in dissociated cell cultures raised from embryonic rostral rat rhombencephalon. The presence of 5-HT1A and 5-HT1B receptors in serotoninergic neurons was assessed using binding assays. The involvement of 5-HT1A and 5-HT1B receptors in the control of the synthesis and release of [3H]5-HT was studied using biochemical approaches with several serotoninergic receptor ligands. A mean decrease of 30% in [3H]5-HT synthesis and release was observed in the presence of 5-HT (10(-8) M), the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), the 5HT1B/1A agonist 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969), the 5-HT1B agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one (CP-93,129), and the 5-HT(1D/1B) agonist sumatriptan. Inhibition of 5-HT synthesis and release induced by 8-OH-DPAT was blocked by chiral N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropionam ide dihydrochloride quaternary-hydrate (WAY 100135) (10(7) M) or methyl 4-[4-[4-(1,1,3-trioxo-2H-1,2-benzoisothiazol-2-yl)butyl]-1-p iperazinyl]-1Hindole-2-carboxylate (SDZ 216-525) (10(-7)M), and that of CP-93,129 was blocked by methiothepin (10(-7) M). Paradoxically, extracellular levels of [3H]5-HT increased in the presence of 8-OH-DPAT and RU 24969 at 10(-6) M. 5-HT uptake experiments showed that these two agonists interacted with the 5-HT transporter. 5-HT1 binding sites (620 fmol/mg of protein) and 5-HT1A (482 fmol/mg of protein) and 5-HT1B (127 fmol/mg of protein) receptors were detected in 12-day in vitro cell cultures. Experiments carried out with tetrodotoxin suggested that 5-HT1A receptors are located on nerve cell bodies, whereas 5-HT1B receptors are located on the nerve terminals. We concluded that autoregulatory mechanisms involving 5-HT1A and 5-HT1B autoreceptors are functionally mature in cells from rostral raphe nuclei during the early period of development.  相似文献   

12.
Ligand-gated ion channels are integral membrane proteins that mediate fast synaptic transmission. Molecular biological techniques have been extensively used for determining the structure-function relationships of ligand-gated ion channels. However, the transduction mechanisms that link agonist binding to channel gating remain poorly understood. Arginine 222 (Arg-222), located at the distal end of the extracellular N-terminal domain immediately preceding the first transmembrane domain (TM1), is conserved in all 5-HT3A receptors and alpha7-nicotinic acetylcholine receptors that have been cloned. To elucidate the possible role of Arg-222 in the function of 5-HT3A receptors, we mutated the arginine residue to alanine (Ala) and expressed both the wild-type and the mutant receptor in human embryonic kidney 293 cells. Functional studies of expressed wild-type and mutant receptors revealed that the R222A mutation increased the apparent potency of the full agonist, serotonin (5-HT), and the partial agonist, 2-Me-5-HT, 5- and 12-fold, respectively. In addition, the mutation increased the efficacy of 2-Me-5-HT and converted it from a partial agonist to a full agonist. Furthermore, this mutation also converted the 5-HT3 receptor antagonist/very weak partial agonist, apomorphine, to a potent agonist. Kinetic analysis revealed that the R222A mutation increased the rate of receptor activation and desensitization but did not affect rate of deactivation. The results suggest that the pre-TM1 amino acid residue Arg-222 may be involved in the transduction mechanism linking agonist binding to channel gating in 5-HT3A receptors.  相似文献   

13.
Investigations on the effects of the 5-HT agonists and antagonists on the phase of the circadian locomotor activity rhythm of animals kept in constant light conditions (LL) are rare. Therefore the influence of R-(+)-OH-DPAT (5-HT1A receptors agonist) and metergoline (5-HT1/2/7 receptors antagonist) on the phase shift of the locomotor-activity rhythm alone and when combined with dark pulses in mice kept in LL are examined. The results indicate that 8-OH-DPAT administered independently at 12.00CT (Circadian Time) shifted the phase of the circadian rhythm and reinforced the effect of dark pulses on this parameter. 12.00CT was defined arbitrarily as the onset of locomotor activity in constant conditions. Metergoline diminished the phase shifts after dark pulses compared to 8-OH-DPAT. The influence of the serotonin agonist showed that serotonin can reinforce the phase shifting effect of the locomotor activity rhythm after dark pulses in LL condition.  相似文献   

14.
5-HT(1A) receptors have been hypothesized to mediate some of the neuronal plasticity and behavioral responses stimulated by serotonin selective reuptake inhibitors. Although the cellular signaling pathways required for inducing these actions have not yet been determined, roles for the neuroprotective extracellular-regulated kinase (ERK) mitogen-activated protein (MAP) kinase and Akt pathways have been suggested. In the current studies we have utilized primary cultures to directly determine whether hippocampal 5-HT(1A) receptors couple to activation of Akt and ERK. We found that E18 hippocampal neurons exhibit a twofold activation of Akt when exposed to nanomolar concentrations of 5-HT. The 5-HT(1/7) receptor-selective agonist 5-carboxamidotryptamine maleate (5-CT) and the 5-HT(1A/7) receptor-selective agonist 8-hydroxy-N,N-dipropyl-aminotetralin (8-OH-DPAT) maleate were found to activate Akt with equal efficacy, and similar potency, to 5-HT. p-MPPI and WAY-100635, antagonists selective for 5-HT(1A) receptors, completely inhibited 5-CT- stimulated Akt activation. Activation of Akt was also inhibited by pretreatment with pertussis toxin as well as the phosphatidylinositol 3-kinase inhibitors, wortmannin and LY294002. In contrast, the 5-HT selective antagonist, SB269970, caused no inhibition. Although the density of 5-HT(1A) receptors expressed by cultured neurons was sufficient to activate Akt, no activation of ERK was observed. These findings suggest that Akt, and not ERK, may be relevant to previous reports of hippocampal 5-HT(1A) receptors mediating neurotrophic responses.  相似文献   

15.
An alignment of serotonin [5-hydroxytryptamine (5-HT)] G protein-coupled receptors identified a lysine at position 4.45 (helix 4) and a small polar residue (serine or cysteine) at 7.45 (helix 7) that occur exclusively in the 5-HT2 receptor family. Other serotonin receptors have a hydrophobic amino acid, typically a methionine, at 4.45 and an invariant asparagine at 7.45. The functional significance of these class-specific substitutions was tested by site-directed mutagenesis of two distantly related 5-HT2 receptors, Caenorhabditis elegans 5-HT2ce and rat 5-HT2C. Residues 4.45 and 7.45 were each mutated to a methionine and asparagine, respectively, or an alanine and the resulting constructs were tested for activity. A K4.45M mutation decreased serotonin-dependent activity (Emax) of the rat 5-HT2C receptor by 60% and that of the C. elegans homologue by 40%, as determined by a fluorometric plate-based calcium assay. The rat mutant also exhibited nearly sixfold higher agonist binding affinity and significantly lower constitutive activity compared with wildtype. Mutagenesis of S7.45 in the C. elegans receptor increased serotonin binding affinity by up to 25-fold and decreased Emax by up to 65%. The same mutations of the cognate C7.45 in rat 5-HT2C produced a smaller fourfold change in the affinity for serotonin and decreased agonist efficacy by up to 50%. Substitutions of S/C7.45 did not produce a significant change in the basal activity of either receptor. All mutants tested exhibited levels of receptor expression similar to the corresponding wildtype based on measurements of specific [3H]-mesulergine binding or flow cytometry analyses. Taken together, these results suggest that K4.45 and S/C7.45 play an important role in the conformational rearrangements leading to agonist-induced activation of 5-HT2 receptors.  相似文献   

16.
On the basis of our earlier studies with the serotonin receptor ligands in the group of 1,3-dimethyl-3,7-dihydropurine-2,6-dione derivatives, a series of new arylpiperazinylalkyl and tetrahydroisoquinolinylalkyl analogs of 8-alkoxy-1,3-dimethyl-3,7-dihydropurine-2,6-dione (10-25) and 1,3-dimethyl-7,9-dihydro-3H-purine-2,6,8-trione (26-30) were synthesized and their 5-HT(1A), 5-HT(2A), and 5-HT(7) receptor affinities were determined. The new compounds 17, 18, 20, and 21 were found to be highly active 5-HT(1A) receptor ligands (K(i)=11-19nM) with diversified affinity for 5-HT(2A) receptors (K(i)=15-253nM). Compounds 12, 13, 15, and 19 were moderately potent 5-HT(2A) ligands (K(i)=23-57nM), whereas 17, 18, 24, and 25 showed distinct affinity for 5-HT(7) receptors (K(i)=51-83nM). Purine-2,6,8-triones showed weak affinities for 5-HT(1A) and 5-HT(7) receptors; among them, 27 and 29 were classified as 5-HT(2A) receptor ligands. The selected compounds 17 and 21 were pharmacologically evaluated to determine their functional activities at pre-(hypothermia in mice) and post-(lower lip retraction in rats) synaptic 5-HT(1A) receptors. Compound 17 showed features of a potential agonist of pre- and post-synaptic 5-HT(1A) receptors, whereas 21 was classified as a potential, weak partial agonist of postsynaptic sites. Last of all, the most interesting compound 17 tested in behavioral models showed potential anxiolytic and antidepressant activities.  相似文献   

17.
The progestin receptor antagonist RU 38486 (henceforth referred to as RU 486) was tested for facilitative effects on female receptive behavior in ovariectomized Long-Evans rats primed with 2 micrograms estradiol benzoate (EB). RU 486 (0, 0.5, 1.6, or 5.0 mg) was administered 48 hr after estrogen priming. The lordosis quotient (LQ) and lordosis score (LS) were assessed 4 hr after RU 486 administration in a standardized test consisting of a 10-mount test by a stimulus male. A significant dose effect was found by both LQ and LS, with those subjects receiving 5 mg of RU 486 being significantly more receptive than vehicle control animals. Thus RU 486 acted as a weak progestin agonist under testing conditions typical for assessment of progestin facilitation of female sexual behavior in rats. Low levels of proceptive behavior (hops and darts) were seen in a minority of the tests, and did not vary systematically as a function of the dose of RU 486 administered. We also examined the effects of RU 486 given before progesterone (P) on receptivity in a blocking paradigm and confirmed previous reports that the antagonist significantly attenuates facilitation of sexual behavior when given in combination with P. A progestin receptor assay of the cytosols of the hypothalamus-preoptic area in estrogen-primed female rats treated with 5 mg RU 486 revealed a significantly greater depletion of available cytosolic P receptors than when rats were treated with a similarly facilitating dose of P (100 micrograms). The results suggest a possible dual mode of action for RU 486--a weak, receptor-mediated agonistic effect on sexual behavior when given alone to estrogen-primed rats, and a competitive blocking effect on receptivity when administered with P.  相似文献   

18.
Progesterone (P(4)) in the ventromedial hypothalamus (VMH) and ventral tegmental (VTA) is important for facilitation of lordosis; however, P(4)'s actions in these brain areas are different. Using lordosis in rodents as in vivo experimental models, we have examined the effects progestins exert in the midbrain and hypothalamus. Localization and blocker studies indicate that P(4)'s actions in the VMH require intracellular progestin receptors (PRs) but in the VTA they do not. Progestins that have rapid, membrane effects, and/or are devoid of affinity for PRs, facilitate lordosis when applied to the VTA. Manipulation of GABA and/or GABA(A)/benzodiazepine receptor complexes (GBRs) in the VTA alter lordosis, which suggests that progestins may interact with GBRs to facilitate receptivity by enhancing the function of GABAergic neurons. Interfering with P(4)'s metabolism to 5 alpha-pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP), the most effective endogenous positive modulator of GBRs, or the biosynthesis of the neurosteroid 3 alpha,5 alpha-THP in the VTA attenuates female sexual behavior in rodents. Stimulation of mitochondrial benzodiazepine receptors (MBRs), which enhance neurosteroid production, by infusions of a MBR agonist to the VTA enhances lordosis. 3 alpha,5 alpha-THP is increased in the midbrain of mated > proestrous > diestrous rodents. These data suggest that 3 alpha,5 alpha-THP has a proximate modulatory role on lordosis. In summary, the actions of P(4) in the VTA are different from those in the VMH that involve PRs. In the VTA, P(4) may facilitate lordosis following metabolism to and/or biosynthesis of 3 alpha,5 alpha-THP, which may have subsequent actions at GBRs and/or MBRs to acutely modulate female sexual behavior in rodents.  相似文献   

19.
Iloperidone has demonstrated an interesting monoamine receptor profile in radioligand binding studies, with nanomolar affinity for certain noradrenaline, dopamine, and serotonin receptors. In this study, the agonist/antagonist activity of iloperidone was determined in cell lines expressing recombinant human D(2A), D(3), alpha(2C), 5-HT(1A), or 5-HT(6) receptors. With the exception of 5-HT(6) receptors, these receptors are negatively coupled to cyclase. Thus, after stimulation with forskolin, the agonists dopamine (at D(2A) and D(3)), noradrenaline (at alpha(2C)), or 8-OH-DPAT (at 5-HT(1A)) induced a reduction in cAMP accumulation. Conversely, activation of the 5-HT(6) receptor by 5-HT led to an increase in cAMP accumulation. Iloperidone alone was devoid of significant agonist activity but inhibited the agonist response in all 5 cell lines in a surmountable and concentration-dependent fashion. Iloperidone was most potent at D(3) receptors (pK(B) 8.59 +/- 0.20; n = 6), followed by alpha(2C) (pK(B) 7.83 +/- 0.06; n = 15), 5-HT(1A) (pK(B) 7.69 +/- 0.18; n = 10), D(2A) (pK(B) 7.53 +/- 0.04; n = 11) and 5-HT(6) (pK(B) 7.11 +/- 0.08; n = 11) receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号