首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
OVCA1 is a tumor suppressor identified by positional cloning from chromosome 17p13.3, a hot spot for chromosomal aberration in breast and ovarian cancers. It has been shown that expression of OVCA1 is reduced in some tumors and that it regulates cell proliferation, embryonic development, and tumorigenesis. However, the biochemical function of OVCA1 has remained unknown. Recently, we isolated a novel mutant resistant to diphtheria toxin and Pseudomonas exotoxin A from the gene trap insertional mutants library of Chinese hamster ovary cells. In this mutant, the Ovca1 gene was disrupted by gene trap mutagenesis, and this disruption well correlated with the toxin-resistant phenotype. We demonstrated direct evidence that the tumor suppressor OVCA1 is a component of the biosynthetic pathway of diphthamide on elongation factor 2, the target of bacterial ADP-ribosylating toxins. A functional genetic approach utilizing the random gene trap mutants library of mammalian cells should become a useful strategy to identify the genes responsible for specific phenotypes.  相似文献   

3.
Diphthamide is a conserved modification in archaeal and eukaryal translation elongation factor 2 (EF2). Its name refers to the target function for diphtheria toxin, the disease‐causing agent that, through ADP ribosylation of diphthamide, causes irreversible inactivation of EF2 and cell death. Although this clearly emphasizes a pathobiological role for diphthamide, its physiological function is unclear, and precisely why cells need EF2 to contain diphthamide is hardly understood. Nonetheless, the conservation of diphthamide biosynthesis together with syndromes (i.e. ribosomal frame‐shifting, embryonic lethality, neurodegeneration and cancer) typical of mutant cells that cannot make it strongly suggests that diphthamide‐modified EF2 occupies an important and translation‐related role in cell proliferation and development. Whether this is structural and/or regulatory remains to be seen. However, recent progress in dissecting the diphthamide gene network (DPH1DPH7) from the budding yeast Saccharomyces cerevisiae has significantly advanced our understanding of the mechanisms required to initiate and complete diphthamide synthesis on EF2. Here, we review recent developments in the field that not only have provided novel, previously overlooked and unexpected insights into the pathway and the biochemical players required for diphthamide synthesis but also are likely to foster innovative studies into the potential regulation of diphthamide, and importantly, its ill‐defined biological role.  相似文献   

4.
Diphthamide is a post-translational derivative of histidine in protein synthesis elongation factor-2 (eEF-2) that is present in all eukaryotes with no known normal physiological role. Five proteins Dph1–Dph5 are required for the biosynthesis of diphthamide. Chinese hamster ovary (CHO) cells mutated in the biosynthetic genes lack diphthamide and are resistant to bacterial toxins such as diphtheria toxin. We found that diphthamide-deficient cultured cells were threefold more sensitive than their parental cells towards ricin, a r ibosome- i nactivating p rotein (RIP). RIPs bind to ribosomes at the same site as eEF-2 and cleave the large ribosomal RNA, inhibiting translation and causing cell death. We hypothesized that one role of diphthamide may be to protect ribosomes, and therefore all eukaryotic life forms, from RIPs, which are widely distributed in nature. A protective role of diphthamide against ricin was further demonstrated by complementation where dph mutant CHO cells transfected with the corresponding DPH gene acquired increased resistance to ricin in comparison with the control-transfected cells, and resembled the parental CHO cells in their response to the toxin. These data show that the presence of diphthamide in eEF-2 provides protection against ricin and suggest the hypothesis that diphthamide may have evolved to provide protection against RIPs.  相似文献   

5.
Several mutant cDNAs of elongation factor 2 (EF-2) were constructed by site-directed mutagenesis and their products expressed in mouse cells were investigated. Amino acid substitution for the histidine residue of codon 715, which is modified post-translationally to diphthamide, resulted in non-functional EF-2 and this substitution did not render EF-2 resistant to Pseudomonas aeruginosa exotoxin A, which inactivates EF-2 transferring ADP-ribose to the diphthamide residue. These non-functional EF-2s with replacements of the histidine-715 residue showed various extents of inhibition of protein synthesis by competing with functional EF-2 in vivo. These results suggest that histidine-715 is essential for the translocase activity of EF-2 and that the region around diphthamide functions in recognition of, and/or binding to ribosomes. Substitution of proline for the alanine-713 residue and substitution of glutamine for the glycine-717 residue converted EF-2 to partially toxin-resistant forms. Two-dimensional gel analysis with fragment A of diphtheria toxin of these toxin-resistant EF-2s revealed that their ADP-ribosylations by toxin were much less than that of wild-type EF-2.  相似文献   

6.
Protein synthesis elongation factor 2 (EF-2) from eukaryotes contains a conserved post-translationally modified histidine residue known as diphthamide. Diphthamide is a unique site of ADP-ribosylation by diphtheria toxin (DT), which is responsible for cell killing. In this report, we describe the construction of DT-resistant HeLa cell lines by engineering the toxin-resistant form of its specific substrate, protein elongation factor-2. Using site-specific mutagenesis of the histidine precursor of diphthamide, the histidine residue of codon 715 in human EF-2 cDNA was substituted with one of four amino acid residue codons: leucine, methionine, asparagine or glutamine. Mutant EF-2s were subcloned into a pCMVexSVneo expression vector, transfected into HeLa cells, and DT-resistant cell clones were isolated. The protective effect of mutant EF-2s against cell killing by DT, after exposing all four mutant strains derived from HeLa cells to different concentrations of the toxin (5-20 ng/mL) was demonstrated by: (1) the normal morphological appearance of the cells; (2) their unaffected or slightly slower growth rates; (3) their undisturbed electrophoretic DNA profiles whose integrity was virtually preserved. Mutant cell strains showed also considerable levels of resistance to very high concentrations of DT, in that they maintained slower but consistent rates of cell growth. It was hence concluded that despite its strict conservation and unique modification, the diphthamide histidine appears not to be essential to the function of human EF-2 in protein synthesis. In addition, DT-resistant HeLa cell clones should prove valuable hosts for various DT gene-containing vectors that express the toxin intracellularly.  相似文献   

7.
The post-translational trimethylation of diphthamide studied in vitro   总被引:2,自引:0,他引:2  
The amino acid diphthamide is a complex post-translational derivative of histidine that exists in eukaryotic and Archaebacterial elongation factor 2 (EF-2). Diphtheria toxin and Pseudomonas exotoxin A catalyze the transfer of an ADP-ribose residue from NAD to diphthamide, causing the inactivation of EF-2. We have used cytosolic extracts of mutant CHO-K1 cells to study the biosynthesis of diphthamide in vitro. We have identified chromatographically a precursor form of diphthamide that exists in one complementation group of mutant cells and have documented the addition of 3 methyl residues from S-adenosylmethionine to this precursor. We have identified the presence of methyltransferase capable of carrying out this reaction in vitro in cells of 15 diverse eukaryotic species.  相似文献   

8.
Protein synthesis elongation factor 2 (EF-2) from all archaebacteria so far analysed, is susceptible to inactivation by diphtheria toxin, a property which it shares with EF-2 from the eukaryotic 8OS translation system. To resolve the structural basis of diphtheria toxin susceptibility, the structural gene for the EF-2 from an archaebacterium, Methanococcus vannielii, was cloned and its nucleotide sequence determined. It was found that (i) this gene is closely linked to that coding for elongation factor 1 alpha-(EF-1 alpha), (ii) the size of the gene product, as derived from the nucleotide sequence, lies between those for EF-2 from eukaryotes and eubacteria, (iii) it displays a higher sequence similarity to eukaryotic EF-2 than to eubacterial homologues, and (iv) the histidine residue which is modified to diphthamide and then ADP-ribosylated by diphtheria toxin is present in a sequence context similar to that of eukaryotic EF-2 but it is not conserved in eubacterial EF-G. The EF-2 gene from Methanococcus is expressed in transformed Saccharomyces cerevisiae but is not ADP-ribosylated by diphtheria toxin. This indicates that the Saccharomyces enzyme system is unable to post-translationally convert the respective histidine residue from the Methanococcus EF-2 into diphthamide.  相似文献   

9.
The histidine derivative diphthamide occurs uniquely in eukaryotic elongation factor 2 (EF-2), and is the specific target for the diphtheria toxin mono(ADP-ribosyl)transferase. The first step in diphthamide biosynthesis may involve the transfer of aminocarboxypropyl moiety from S-adenosylmethionine to the imidazole ring of histidine in EF-2, to yield 2-(3-carboxy-3-aminopropyl)histidine and 5'-deoxy-5'-methylthioadenosine (MeSAdo). As the possible nucleoside product of the initial reaction in the diphthamide biosynthetic pathway, MeSAdo could be an inhibitor of diphthamide formation. In the present experiments, we have analyzed the effects of MeSAdo on diphthamide synthesis in a MeSAdo phosphorylase-deficient mutant murine lymphoma cell line (R1.1, clone H3). As measured by susceptibility to diphtheria toxin-induced ADP-ribosylation, MeSAdo inhibited the formation of diphthamide in EF-2. The inhibition was not due to a nonspecific effect on protein synthesis. Indeed, exogenous MeSAdo substantially protected the lymphoma cells from the lethal effects of diphtheria toxin. These results suggest that MeSAdo can specifically modulate the biosynthesis of diphthamide in EF-2 in murine malignant lymphoma cells.  相似文献   

10.
The inactivation of elongation factor 2 (EF-2) by diphtheria toxin requires the presence of a post-translationally modified histidine residue in EF-2. This residue, diphthamide, has the structure 2-[3-carboxyamido-3-(trimethylammonio)propyl]histidine. The present work was undertaken to study the pathway of diphthamide biosynthesis using diphtheria toxin-resistant yeast mutants (Chen. J.-Y., Bodley, J. W., and Livingston, D. M. (1985) Mol. Cell. Biol. 5, 3357-3360) which are defective in diphthamide formation. We demonstrate here that one of these mutants (dph5) contains a toxin-resistant form of EF-2 which can be converted in vitro to a toxin-sensitive form through the action of an enzyme present in other yeast strains. Both this toxin-resistant EF-2 and its modifying enzyme have been partially purified and evidence is presented that the modifying enzyme is a specific S-adenosylmethionine:EF-2 methyltransferase. In vitro complementation to diphtheria toxin sensitivity required S-adenosylmethionine, and when partially purified components were incubated with [methyl-3H]S-adenosylmethionine, label was incorporated specifically into EF-2. Hydrolysis of labeled EF-2 yielded diphthine (the unamidated form of diphthamide) and a single chromatographically separable labeling intermediate. We conclude that the S-adenosylmethionine:EF-2 methyltransferase adds at least the last two of the three methyl groups present in diphthine and that this modification is sufficient to create diphtheria toxin sensitivity. Evidence is also presented for the existence of an ATP-dependent amidating enzyme which catalyzes the final step in the biosynthesis of diphthamide in EF-2.  相似文献   

11.
A mutant of Saccharomyces cerevisiae defective in the S-adenosylmethionine (AdoMet)-dependent methyltransferase step of diphthamide biosynthesis was selected by intracellular expression of the F2 fragment of diphtheria toxin (DT) and shown to belong to complementation group DPH5. The DPH5 gene was cloned, sequenced, and found to encode a 300-residue protein with sequence similarity to bacterial AdoMet:uroporphyrinogen III methyltransferases, enzymes involved in cobalamin (vitamin B12) biosynthesis. Both DPH5 and AdoMet:uroporphyrinogen III methyltransferases lack sequence motifs commonly found in other methyltransferases and may represent a new family of AdoMet:methyltransferases. The DPH5 protein was produced in Escherichia coli and shown to be active in methylation of elongation factor 2 partially purified from the dph5 mutant. A null mutation of the chromosomal DPH5 gene did not affect cell viability, in agreement with other studies indicating that diphthamide is not required for cell survival. The dph5 null mutant survived expression of three enzymically attenuated DT fragments but was killed by expression of fully active DT fragment A. Consistent with these results, elongation factor 2 from the dph5 null mutant was found to have weak ADP-ribosyl acceptor activity, which was detectable only in the presence of high concentrations of fragment A.  相似文献   

12.
Diphthamide, a posttranslational modification of translation elongation factor 2 that is conserved in all eukaryotes and archaebacteria and is the target of diphtheria toxin, is formed in yeast by the actions of five proteins, Dph1 to -5, and a still unidentified amidating enzyme. Dph2 and Dph5 were previously identified. Here, we report the identification of the remaining three yeast proteins (Dph1, -3, and -4) and show that all five Dph proteins have either functional (Dph1, -2, -3, and -5) or sequence (Dph4) homologs in mammals. We propose a unified nomenclature for these proteins (e.g., HsDph1 to -5 for the human proteins) and their genes based on the yeast nomenclature. We show that Dph1 and Dph2 are homologous in sequence but functionally independent. The human tumor suppressor gene OVCA1, previously identified as homologous to yeast DPH2, is shown to actually be HsDPH1. We show that HsDPH3 is the previously described human diphtheria toxin and Pseudomonas exotoxin A sensitivity required gene 1 and that DPH4 encodes a CSL zinc finger-containing DnaJ-like protein. Other features of these genes are also discussed. The physiological function of diphthamide and the basis of its ubiquity remain a mystery, but evidence is presented that Dph1 to -3 function in vivo as a protein complex in multiple cellular processes.  相似文献   

13.
W J Iglewski  H Lee  P Muller 《FEBS letters》1984,173(1):113-118
Fragment A of diphtheria toxin and Pseudomonas toxin A intoxicate cells by ADP-ribosylating the diphthamide residue of elongation factor-2 (EF-2) resulting in an inhibition of protein synthesis [1-3]. A cellular enzyme from polyoma virus transformed baby hamster kidney (pyBHK) cells ADP-ribosylates EF-2 in an identical manner [4]. Here we describe a similar cellular enzyme from beef liver which transfers [adenosine-14C]ADP-ribose from NAD to EF-2. The 14C-label can be removed from the EF-2 by snake venom phosphodiesterase as a soluble product which comigrates with AMP on TLC plates, indicating the 14C-label is present on EF-2 as monomeric units of ADP-ribose. Furthermore, the forward transferase reaction catalyzed by the beef liver ADP-ribosyltransferase is reversible by excess diphtheria toxin fragment A, with the formation of 14C-labeled NAD, indicating that both transferases ADP-ribosylate the same site on the diphthamide residue of EF-2. Thus, beef liver and pyBHK mono(ADP-ribosyl)transferases both modify the diphthamide residue of EF-2, in a manner identical to diphtheria toxin fragment A and Pseudomonas toxin A. These results suggest the cellular enzyme is probably ubiquitous among eukaryotic cells.  相似文献   

14.
Roy V  Ghani K  Caruso M 《PloS one》2010,5(12):e15753
Diphtheria toxin (DT), Pseudomonas aeruginosa Exotoxin A (ETA) and cholix toxin from Vibrio cholerae share the same mechanism of toxicity; these enzymes ADP-rybosylate elongation factor-2 (EF-2) on a modified histidine residue called diphthamide, leading to a block in protein synthesis. Mutant Chinese hamster ovary cells that are defective in the formation of diphthamide have no distinct phenotype except their resistance to DT and ETA. These observations led us to predict that a strategy that prevents the formation of diphthamide to confer DT and ETA resistance is likely to be safe. It is well documented that Dph1 and Dph2 are involved in the first biochemical step of diphthamide formation and that these two proteins interact with each other. We hypothesized that we could block diphthamide formation with a dominant negative mutant of either Dph1 or Dph2. We report in this study the first cellular-targeted strategy that protects against DT and ETA toxicity. We have generated Dph2(C-), a dominant-negative mutant of Dph2, that could block very efficiently the formation of diphthamide. Cells expressing Dph2(C-) were 1000-fold more resistant to DT than parental cells, and a similar protection against Pseudomonas exotoxin A was also obtained. The targeting of a cellular component with this approach should have a reduced risk of generating resistance as it is commonly seen with antibiotic treatments.  相似文献   

15.
Anti-[ADP-ribosylated elongation factor 2 (EF-2)] antiserum has been used to immunoprecipitate the modified form of EF-2 from polyoma-virus-transformed baby hamster kidney (pyBHK) cells [Fendrick, J. L. & Iglewski, W. J. (1989) Proc. Natl Acad. Sci. USA 86, 554-557]. This antiserum also immunoprecipitates a 32P-labelled protein of similar size to EF-2 from a variety of primary and continuous cell lines derived from many species of animals. One of these cell lines, chinese hamster ovary CHO-K1 cells was further characterized. The time course of labelling of ADP-ribosylated EF-2 with [32P]orthophosphate was similar in pyBHK cells and in CHO-K1 cells. The kinetics of labelling were more rapid for cells cultured in 2% serum than 10% serum, with incorporation of 32P reaching a maximum at 6 h and 10 h, respectively. EF-2 mutants of pyBHK and CHO-K1 cells resistant to diphtheria-toxin-catalyzed ADP-ribosylation of EF-2 remain sensitive to cellular ADP-ribosylation of EF-2. The 32P-labelled moiety of ADP-ribosylated EF-2 was digested by snake venom phosphodiesterase and the product was identified as AMP. The same 32P-labelled tryptic peptide was modified by toxin in wild-type EF-2 and by the cellular transferase in mutant EF-2. When purified EF-2 from pyBHK cells was incubated with [carbonyl-14C]nicotinamide and diphtheria toxin fragment A, under conditions for reversal of the ADP-ribosylation reaction, [14C]NAD was generated. The results suggest that cellular ADP-ribosylated EF-2 exists in a variety of cell types, and the ribosylated product is identical to that produced by toxin ADP-ribosylation of EF-2, except in diphthamide mutant cells. Studies with the mutant cell lines indicate that the toxin and the cellular transferase, however, recognize different determinants at the ADP-ribose acceptor site in EF-2. The cellular transferase does not require the diphthamide modification of the histidine ring in the amino acid sequence of EF-2 for the transfer of ADP-ribose to the ring. Therefore, we would expect the cellular transferase active site to be similar to, but not identical to, the critical amino acids demonstrated in the active site of diphtheria toxin and Pseudomonas exotoxin A.  相似文献   

16.
17.
The elongation factor 2 (EF-2) genes of the yeast Saccharomyces cerevisiae have been cloned and characterized with the ultimate goal of gaining a better understanding of the mechanism and control of protein synthesis. Two genes (EFT1 and EFT2) were isolated by screening a bacteriophage lambda yeast genomic DNA library with an oligonucleotide probe complementary to the domain of EF-2 that contains diphthamide, the unique posttranslationally modified histidine that is specifically ADP-ribosylated by diphtheria toxin. Although EFT1 and EFT2 are located on separate chromosomes, the DNA sequences of the two genes differ at only four positions out of 2526 base pairs, and the predicted protein sequences are identical. Genetic deletion of each gene revealed that at least one functional copy of either EFT gene is required for cell viability. Messenger RNA levels of yeast EF-2 parallel cellular growth and peak in mid-log phase cultures. The EF-2 protein sequence is strikingly conserved through evolution. Yeast EF-2 is 66% identical to, and shares over 85% homology with, human EF-2. In addition, yeast and mammalian EF-2 share identical sequences at two critical functional sites: (i) the domain containing the histidine residue that is modified to diphthamide and (ii) the threonine residue that is specifically phosphorylated in vivo in mammalian cells by calmodulin-dependent protein kinase III, also known as EF-2 kinase. Furthermore, yeast EF-2 also contains the Glu-X-X-Arg-X-Ile-Thr-Ile "effector" sequence motif that is conserved among all known elongation factors, and its GTP-binding domain exhibits strong homology to the G-domain of Escherichia coli elongation factor Tu (EF-Tu) and other G-protein family members. Based upon these observations, we have modeled the G-domain of the deduced EF-2 protein sequence to the solved crystallographic structure for EF-Tu.  相似文献   

18.
19.
The translation elongation factor 2 in eukaryotes (eEF-2) contains a unique posttranslationally modified histidine residue, termed diphthamide, which serves as the only target for diphtheria toxin and Pseudomonas aeruginosa exotoxin A. Diphthamide biosynthesis is carried out by five highly conserved proteins, Dph1 to Dph5, and an as-yet-unidentified amidating enzyme. The evolutionary conservation of the complex diphthamide biosynthesis pathway throughout eukaryotes implies a key role for diphthamide in normal cellular physiology. Of the proteins required for diphthamide synthesis, Dph3 is the smallest, containing only 82 residues. In addition to having a role in diphthamide biosynthesis, Dph3 is also involved in modulating the functions of the Elongator complex in yeast. To explore the physiological roles of Dph3 and to begin to investigate the function of diphthamide, we generated dph3 knockout mice and showed that dph3+/- mice are phenotypically normal, whereas dph3-/- mice, which lack the diphthamide modification on eEF-2, are embryonic lethal. Loss of both dph3 alleles causes a general delay in embryonic development accompanied by lack of allantois fusion to the chorion and increased degeneration and necrosis in neural tubes and is not compatible with life beyond embryonic day 11.5. The dph3-/- placentas also developed abnormally, showing a thinner labyrinth lacking embryonic erythrocytes and blood vessels. These results attest to the physiological importance of Dph3 in development. The biological roles of Dph3 are also discussed.  相似文献   

20.
Eukaryotic elongation factor 2 (eEF2) mediates translocation in protein synthesis. The molecular mimicry model proposes that the tip of domain IV mimics the anticodon loop of tRNA. His-699 in this region is post-translationally modified to diphthamide, the target for Corynebacterium diphtheriae and Pseudomonas aeruginosa toxins. ADP-ribosylation by these toxins inhibits eEF2 function causing cell death. Mutagenesis of the tip of domain IV was used to assess both functions. A H694A mutant strain was non-functional, whereas D696A, I698A, and H699N strains conferred conditional growth defects, sensitivity to translation inhibitors, and decreased total translation in vivo. These mutant strains and those lacking diphthamide modification enzymes showed increased -1 frameshifting. The effects are not due to reduced protein levels, ribosome binding, or GTP hydrolysis. Functional eEF2 forms substituted in domain IV confer dominant diphtheria toxin resistance, which correlates with an in vivo effect on translation-linked phenotypes. These results provide a new mechanism in which the translational machinery maintains the accurate production of proteins, establishes a role for the diphthamide modification, and provides evidence of the ability to suppress the lethal effect of a toxin targeted to eEF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号