首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free radical production from the reaction of hydrazine and 1-acetyl-2-phenylhydrazine (AcPhHZ) with oxyhaemoglobin and with human red blood cells, has been observed by the electron spin resonance technique of spin trapping. Using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the free radical intermediates detected depended on the hydrazine derivative, oxyhaemoglobin and the oxyhaem/hydrazine derivative concentration ratio.

The reaction of hydrazine with oxyhaemoglobin in the presence of DMPO gave a nitroxide which was identified as a reduced dimer of DMPO. Whereas hydrazine-treated red blood cells, in the presence of DMPO, gave a nitroxide spin adduct which was identified as the hydroxyl radical spin adduct of DMPO, 5,5-dimethyl-1-pyrrolidino-1-oxyl (DMPO-OH).

The reaction of AcPhHZ with oxyhaemoglobin, in the presence of DMPO, gave DMPO-OH, the phenyl radical spin adduct of DMPO, 5,5-dimethyl-2-phenylpyrrolidino-1-oxyl (DMPO-Ph) and an oxidised derivative of DMPO, 5,5-dimethyl-2-pyrrolidone-1-oxyl (DMPOX). The amounts of DMPO-Ph, DMPO-OH and DMPOX observed depended on the 1-acetyl-2-phenyl-hydrazine/oxyhaemoglobin concentration ratio; DMPOX replaced DMPO-OH as the concentration of AcPhHZ was decreased. DMPOX production has been previously associated with the production of highly oxidised haem iron-oxygen intermediates. AcPhHZ treated red blood cells gave DMPO-Ph and DMPO-OH spin adducts in the presence of DMPO.

DMPO had little to no effect on the rate of oxygen consumption by oxyhaemoglobin with hydrazine and AcPhHZ. Moreover, the rate of oxyhaemoglobin oxidation induced by hydrazine, was not decreased by DMPO whereas the rate of oxyhaemoglobin oxidation induced by AcPhHZ was decreased approx. 40% by DMPO. DMPO (10 mM) gave a small decrease in haemolysis and lipid peroxidation induced by 1 mM hydrazine and AcPhHZ in a 1% suspension of red blood cells.  相似文献   


2.
We investigated aqueous solutions containing nitrite ions and DMPO (5,5-dimethyl-1-pyrroline-N-oxide) by electron spin resonance (ESR) in the pH range from 1 to 6. A DMPO-OH signal was observed below pH 3.0 in the presence of nitrite ions, whereas in the absence of nitrite ion, an extremely weak signal was observed below pH 1.5. Addition of methanol, a hydroxyl radical scavenger, to this system did not lead to the appearance of a detectable DMPO-CH2OH signal. The possibility of this DMPO-OH signal being due to a genuine spin trapping process with hydroxyl radical was, therefore, ruled out. The reactivities of reactive nitrogen species (RNS) in this system with DMPO have also been investigated by density functional theory (DFT) at the IEFPCM (water)/B3LYP/6–311?+?G ** level of theory. On the basis of the pH dependence of the signal intensity and the redox potential (versus SHE) calculated by DFT theory, we propose that the origin of this signal is “inverted spin trapping” via one-electron oxidation of DMPO by H2ONO+, followed by the nucleophilic addition of water. Prevention of these false-positive results when detecting hydroxyl radical using ESR spin trapping requires an awareness of both the presence of nitrite ions in the solution and the solution pH.  相似文献   

3.
A new method using ESR spin trapping was proposed for measuring the scavenging activity of antioxidants for the hydroxyl (OH) radical. (-)-Epigallocatechin gallate (EGCg) and 5,5-dimethyl-1-pyrrolline N-oxide (DMPO) were used as the antioxidant and spin trapping agent, respectively. The conventional method using a Fenton reaction had problems associated with the estimation of activity, because the antioxidant disturbs the system for generating OH radical by coordinating on Fe2+ and by consuming H2O2, besides scavenging the spin adduct (DMPO-OH). Intense γ-irradiation was therefore used to generate OH radicals, and the intensity decrease in DMPO-OH after irradiation was followed to obtain the rate constant for the scavenging of DMPO-OH by EGCg. The intensities were extrapolated to zero time to estimate the quantity of DMPO-OH formed during γ-irradiation. By using these values, the reaction rate constant between OH radical and EGCg was calculated as a ratio to that of DMPO. It was shown that this method is useful for comparing the OH radical-scavenging activity of various antioxidants.  相似文献   

4.
Activation of human neutrophils leads to secretion of myeloperoxidase (MPO) with resulting generation of several oxidant species including OCl-. Spin trapping techniques employing 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) are being applied increasingly to the investigation of free radical production by in vitro and in vivo experimental systems which contain neutrophils. Because such knowledge is critical to the interpretation of these data, we examined the impact of MPO and MPO-derived oxidants on DMPO spin adduct formation and stability. Addition of increasing concentrations of OCl- to DMPO yielded a number of EPR-detectable products including DMPO-OH. However, the concentration of OCl- required was in excess of that expected under physiologic conditions. Addition of purified human MPO and H2O2 to DMPO yielded EPR spectra consisting of small DMPO-OH peaks. The addition of MPO and H2O2 to preformed DMPO-OH and DMPO-CH3 resulted in rapid destruction of these spin adducts. Thus MPO/H2O2 appeared to both generate and destroy DMPO spin adducts. Neutrophils stimulated with phorbol myristate acetate or opsonized zymosan generated large DMPO-OOH and DMPO-OH peaks as well as small DMPO-CH3 peaks. Addition of the MPO inhibitor azide to the reaction mixture had no effecting on resulting DMPO-OH or DMPO-CH3 peak amplitudes but increased that of DMPO-OOH. These data suggest that MPO-derived oxidants likely have little impact on the nature of EPR spectra resulting from DMPO spin trapping of free radical species following neutrophil stimulation. Because MPO oxidants did appear to react with DMPO the ability of DMPO to protect a biologic target from in vitro MPO injury was examined. DMPO (greater than 10 mM) significantly decreased MPO/H2O2/Cl- -mediated erythrocyte hemolysis as assessed by 51Cr release. The experimental and/or pharmacologic implications of this observation require further study.  相似文献   

5.
Incubation of MC-1010 cells with the spin-trapping agent 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) followed by brief treatment with the solid oxidant lead dioxide (PbO2) yielded, after filtration, a cell-free solution that contained two nitroxyl adducts. The first was the hydroxyl radical adduct, 5,5-dimethyl-2-hydroxypyrrolidine-1-oxyl (DMPO-OH), which formed immediately upon PbO2 oxidation. The second had a 6-line EPR spectrum typical of a carbon-centered radical (AN=15.9 G; AH=22.4 G) and formed more slowly. No radical signals were detected in the absence of either cells or PbO2 treatment. The 6-line spectrum could be duplicated in model systems that contained ascorbate, DMPO and DMPO-OH, where the latter was formed from hydroxyl radicals generated by sonolysis or the cleavage of hydrogen peroxide with Fe2+ (Fenton reaction). In addition, enrichment of MC-1010 cells with ascorbate prior to spin trapping yielded the 6-line EPR spectrum as the principal adduct following PbO2 oxidation and filtration. These results suggest that ascorbate reacted with DMPO-OH to form a carbon-centered ascorbyl radical that was subsequently trapped by DMPO. The requirement for mild oxidation to detect the hydroxyl radical adduct suggests that DMPO-OH formed in the cells was reduced to an EPR-silent form (i.e., the hydroxylamine derivative). Alternatively, the hydroxylamine derivative was the species initially formed. The evidence for endogenous hydroxyl radical formation in unstimulated leukocytes may be relevant to the leukemic nature of the MC-1010 cell line. The spin trapping of the ascorbyl radical is the first report of formation of the carbon-centered ascorbyl radical by means other than pulse radiolysis. Unless it is spin trapped, the carbon-centered ascorbyl radical immediately rearranges to the more stable oxygen-centered species that is passive to spin trapping and characterized by the well-known EPR doublet of AH4=1.8 G.Abbreviation EPR Electron Paramagnetic Resonance  相似文献   

6.
Electron spin resonance (ESR) studies on spin trapping of superoxide and hydroxyl radicals by 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) were performed in NADPH-cytochrome P-450 reductase-paraquat systems at pH 7.4. Spin adduct concentrations were determined by comparing ESR spectra of the adducts with the ESR spectrum of a stable radical solution. Kinetic analysis in the presence of 100 microM desferrioxamine B (deferoxamine) showed that: 1) the oxidation of 1 mol of NADPH produces 2 mol of superoxide ions, all of which can be trapped by DMPO when extrapolated to infinite concentration; 2) the rate constant for the reaction of superoxide with DMPO was 1.2 M-1 s-1; 3) the superoxide spin adduct of DMPO (DMPO-OOH) decays with a half-life of 66 s and the maximum level of DMPO-OOH formed can be calculated by a simple steady state equation; and 4) 2.8% or less of the DMPO-OOH decay occurs through a reaction producing hydroxyl radicals. In the presence of 100 microM EDTA, 5 microM Fe(III) ions nearly completely inhibited the formation of the hydroxyl radical adduct of DMPO (DMPO-OH) as well as the formation of DMPO-OOH and, when 100 microM hydrogen peroxide was present, produced DMPO-OH exclusively. Fe(III)-EDTA is reduced by superoxide and the competition of superoxide and hydrogen peroxide in the reaction with Fe(II)-EDTA seems to be reflected in the amounts of DMPO-OOH and DMPO-OH detected. These effects of EDTA can be explained from known kinetic data including a rate constant of 6 x 10(4) M-1 s-1 for reduction of DMPO-OOH by Fe(II)-EDTA. The effect of diethylenetriamine pentaacetic acid (DETAPAC) on the formation of DMPO-OOH and DMPO-OH was between deferoxamine and EDTA, and about the same as that of endogenous chelator (phosphate).  相似文献   

7.
Because the intestine is the first pass organ for orally administered drugs and because some of these drugs are known to undergo oxidative metabolism leading to the formation of free radicals, we investigated the potential for this to occur in cell suspensions of rat enterocytes. As part of our study, the effect of intracellularly produced superoxide on cellular metabolism was investigated. The drugs chosen were the quinone, menadione and the aromatic nitro-containing compound, nitrazepam. On incubation of both drugs with isolated enterocytes and the spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), rapid appearance of an electron paramagnetic resonance (EPR) spectrum was recorded which was characteristic of hydroxyl radicals being spin trapped by DMPO giving 2,2-dimethyl-5-hydroxy-1-pyrrolidenyloxyl (DMPO-OH). Experiments were conducted which determined that the EPR spectrum of DMPO-OH resulted from the initial spin trapping of superoxide by DMPO to yield the corresponding nitroxide, 2,2-dimethyl-5-hydroxyl-1-pyrrolidenyloxyl (DMPO-OOH). Bioreduction of DMPO-OOH by glutathione peroxidase led to the rapid formation of DMPO-OH. We believe this enzymic pathway accounted for the EPR spectrum noted in incubations with either drug in the presence of the spin trap, DMPO. The incubation of enterocytes with both drugs did not mediate release of 51Cr nor lactate dehydrogenase. However, production of 14CO2 from [14C]glucose was severely inhibited (4-5-fold) in the presence of both drugs, while the incorporation of [14C]leucine into trichloroacetic acid precipitable protein was antagonized by menadione only. We conclude that superoxide can be demonstrated to arise as the result of enterocyte metabolism of menadione or nitrazepam. The consequence of oxidative metabolism of these drugs results in cellular dysfunction.  相似文献   

8.
Superoxide anions (O2.−) generated by the reaction of xanthine with xanthine oxidase were measured by the reduction of cytochrome c and by electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Studies were performed to determine the relative sensitivities of these two techniques for the measurement of O2.−. Mixtures of xanthine, xanthine oxidase, DMPO generated two adducts, a transient DMPO-OOH and a smaller but longer-lived DMPO-OH. Both adducts were inhibited by superoxide dismutase (SOD), demonstrating they originated from O2.−, and were also significantly decreased when the experiments were performed using unchelated buffers, suggesting that metal ion impurities in unchelated buffers alter the formation or degradation of DMPO-adducts. O2.−, generated by concentrations of xanthine as low as 0.05 μM, were detectable using EPR spin trapping. In contrast, mixtures of xanthine, xanthine oxidase, and cytochrome c measured spectrophotometrically at 550 nm demonstrated that concentrations of xanthine above 1 μM were required to produce measurable levels of reduced cytochrome c. These studies demonstrate that spin trapping using DMPO was at least 20-fold more sensitive than the reduction of cytochrome c for the measurement of superoxide anions. However, at levels of superoxide generation where cytochrome c provides a linear measurement of production, EPR spin trapping may underestimate radical production, probably due to degradation of DMPO radical adducts.  相似文献   

9.
Experiments were conducted to determine which free radicals are generated during the metabolism of adriamycin (ADM) by canine tracheal epithelial (CTE) cells, guinea pig enterocytes, and rat hepatocytes. The technique employed in this study was spin trapping; the spin trap utilized was 5,5-dimethyl-1-pyrroline-1-oxide (DMPO). The spin adduct 2-hydroxy-5,5-dimethyl-1-pyrrolidinyloxyl (DMPO-OH) was observed during the metabolism of ADM by CTE cells. However, the addition of dimethyl sulfoxide to the in vitro system suggested that superoxide is initially spin trapped by the nitrone, and that the adduct 2-hydroperoxy-5,5-dimethyl-1-pyrrolidinyloxyl (DMPO-OOH) is rapidly bioreduced to afford DMPO-OH. The addition of superoxide dismutase to the system indicated that superoxide generation was primarily intracellular. The adriamycin semiquinone free radical (ADM-SQ) was produced during the metabolism by enterocytes and hepatocytes. The rate of the production of ADM-SQ was enhanced under anaerobic conditions, suggesting that molecular oxygen was responsible for the degradation of this carbon-centered free radical. However, spin trapping of oxygen radicals was not observed; this observation suggests that these reactive intermediates are not produced at concentrations sufficient for detection by spin-trapping experiments.  相似文献   

10.
The spin traps substituted with some groups at the 4-position of dimethyl-1-pyrroline N-oxide(DMPO) were compared with DMPO itself regarding their abilities as spin traps and their physical properties. 4,5,5-Trimethyl-l-pyroHine N-oxide (4MDMPO) and 5,5-dimethyl- 4-phenyl-l-pyrolline N-oxide (4PDMPO) were synthesized by the Bonnett method, and 5,5-dimethyl-4-hydroxymethyl-l-pyrolline N-oxide (4HMDMPO) was made by a unique method from 2(5H)-furanone. The melting points of 4MDMPO, 4PDMPO and 4HMDMPO were higher than that of DMPO. The magnitude of hydrophilicity was in the order of 4HMDMPO, DMPO, 4MDMPO, and 4PDMPO based on the partition coefficient experiments in a 1-octanol-water system. Several radicals, O2, HO-, -CH3, -CH2OH, -CH(CH3)OH, (CH3)3 CO and H radicals, were trapped with these DMPO derivatives for comparison with the trapping by DMPO itself. Spin adducts of O J with the three DMPO derivatives showed ESR spectra similar to that of DMPO. In spite of the formation of diastereomers arising from spin trapping, the line-width enlargement was very small. The intensities and the decay rates of the spectra of 4MDMPO-O2-, 4PDMPO-O2- 4HMDMPO-O2- and DMPO-O2- were almost equal. In the trapping of the OH radical by 4MDMPO, 4PDMPO and 4HMDMPO, the eight-line ESR spectra observed were different from the well-known four-line spectrum of DMPO-OH.  相似文献   

11.
Radical production during the photolysis of deaerated aqueous alkaline solutions (pH 11) of some water-soluble porphyrins was investigated. Metal-free and metallo complexes of tetrakis (4-N-methylpyridyl)porphyrin (TMPyP) and tetra (4-sulphonatophenyl)porphyrin (TPPS4) were studied. Evidence for the formation of OH radicals during photolysis at 615, 545, 435, 408 and 335 nm of Fe(III) TPPS4 is presented. Fe(III) TMPyP, Mn(III) TPPS4 and Mn(III) TMPyP also gave OH radicals but only during photolysis at 335 nm. The method of spin trapping with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and 4-pyridyl-1-oxide-N-tert-butylnitrone (POBN) combined with e.s.r. was used for the detection of OH, H and hydrated electrons. With the spin trap DMPO, photolysis generated DMPO-OH adducts under certain conditions but no DMPO-H adducts could be observed. With POBN, no POBN-H adducts were found. The formation of OH was confirmed by studying competition reactions for OH between the spin traps and OH scavengers (formate, isopropanol) and the concomitant formation of the CO-2 adduct and the (CH3)2COH adduct with both DMPO and POBN. The photochemical generation of OH radicals was pH dependent; at pH 7.5 no OH radicals could be detected. Photolysis (615-335 nm) of dicyanocomplexes of the Fe(III) porphyrins did not produce OH radicals. When corresponding Cu(II), Ni(II), Zn(II) and metal-free porphyrins were photolysed at 615 and 335 nm, no OH radicals could be spin trapped. These results tend to associate the well-known phenomenon of photoreduction of Fe(III) and Mn(III) porphyrins with the formation of OH radicals. This process is described mainly as the photoreduction of the metal ion by the ligand-bound hydroxyl ion via an intramolecular process.  相似文献   

12.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (•OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of •OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its •OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of •OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of •OH from 1O2, and that spin trap-mediated •OH generation hardly occurs with DEPMPO.  相似文献   

13.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (?OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of ?OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its ?OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of ?OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of ?OH from 1O2, and that spin trap-mediated ?OH generation hardly occurs with DEPMPO.  相似文献   

14.
The formation of the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/.OH adduct of the spin trap DMPO has been reported to occur through nucleophilic addition of water in the presence of aqueous ferric chloride (K. Makino, T. Hagiwara, A. Hagi, M. Nishi, and A. Murakami, 1990, Biochem. Biophys. Res. Commun. 172, 1073-1080). Due to the serious implications of these findings with respect to many spin trapping studies, the suitability of DMPO as a hydroxyl radical spin trap was studied in typical Fenton systems. Using 17O-enriched water, we show conclusively that nucleophilic addition of water occurs at the nitrone carbon (or C-2 position) of DMPO in the presence of either Fe or Cu ions. Furthermore, our results demonstrate that this nucleophilic reaction is a major pathway to the DMPO/.OH adduct, even during the reaction of Fe(II) or Cu(I) with hydrogen peroxide. Primary alkoxyl adducts of DMPO also form in aqueous solution through nucleophilic addition in the presence of both Fe(III) and Cu(II). Attempts to obtain secondary and tertiary alkoxyl adducts by this mechanism were unsuccessful, possibly due to steric effects. When the reaction is carried out in various buffers, however, or in the presence of metal ion chelators, nucleophilic addition to DMPO from Fe(III) is effectively suppressed. Chelators also suppress the reaction with Cu(II). Hence, under most common experimental conditions in biochemical free radical research, nucleophilic addition to DMPO should not be of major concern.  相似文献   

15.
Generation of active oxygen species by bovine blood platelets was examined by the electron spin resonance (ESR) spin trapping technique with 5,5-dimethyl-l-pyroline-l-oxide (DMPO). The hydroxyl spin-trapped adduct 5,5-dimethyl-2-hydroxy-l-pyrolidinyloxy (DMPO-OH) was formed in the presence of platelets, indicating the generation of hydroxyl radicals (· OH) by the platelets. Generation of · OH was observed even with platelets in the resting state, but was markedly enhanced when the platelets were activated with stimulants. Stronger stimulants such as the calcium ionophore ionomycin, induced greater radical gener-ation than the weaker stimulant ADP. When the platelets were stimulated by thrombin, generation of · OH was greatest after l.5 min, and depended on the dose of the stimulant. It was inhibited by inhibitors of platelet activation such as forskolin and phenolic antioxidants.  相似文献   

16.
The reaction of hypochlorous acid with the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was found to yield 5,5-dimethyl-2-pyrrolidone-N-oxyl (DMPOX). In addition to DMPOX, 5,5-dimethyl-2-hydroxypyrrolidine-N-oxyl (DMPO-OH) and an unidentified chlorine-containing radical species were also observed under neutral and near-neutral conditions. Through the use of [17O]HOCl and the hydroxyl radical scavengers ethanol and formate, it was established that DMPO-OH was derived from hydration of DMPO rather than the spin-trapping of hydroxyl radical. Furthermore, kinetic studies and the incorporation of 17O showed that DMPO-OH was readily oxidized to DMPOX and that this reaction was acid and base catalyzed. Under strongly alkaline conditions, DMPOX reversibly formed another species, presumably the enolate, that had a four-line ESR signal identical to that of DMPO-OH. Eventually, carbon-centered adducts appeared whose ESR signals were consistent with the formation of DMPO condensation products.  相似文献   

17.
The metal-independent production of hydroxyl radicals (*OH) from H(2)O(2) and tetrachloro-1,4-benzoquinone (TCBQ), a carcinogenic metabolite of the widely used wood-preservative pentachlorophenol, was studied by electron spin resonance methods. When incubated with the spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO), TCBQ and H(2)O(2) produced the DMPO/*OH adduct. The formation of DMPO/*OH was markedly inhibited by the *OH scavenging agents dimethyl sulfoxide (DMSO), ethanol, formate, and azide, with the concomitant formation of the characteristic DMPO spin trapping adducts with *CH(3), *CH(CH(3))OH, *COO(-), and *N(3), respectively. The formation of DMPO/*OH and DMPO/*CH(3) from TCBQ and H(2)O(2) in the absence and presence, respectively, of DMSO was inhibited by the trihydroxamate compound desferrioxamine, accompanied by the formation of the desferrioxamine-nitroxide radical. In contrast, DMPO/*OH and DMPO/*CH(3) formation from TCBQ and H(2)O(2) was not affected by the nonhydroxamate iron chelators bathophenanthroline disulfonate, ferrozine, and ferene, as well as the copper-specific chelator bathocuproine disulfonate. A comparative study with ferrous iron and H(2)O(2), the classic Fenton system, strongly supports our conclusion that *OH is produced by TCBQ and H(2)O(2) through a metal-independent mechanism. Metal-independent production of *OH from H(2)O(2) was also observed with several other halogenated quinones.  相似文献   

18.
The spin trapping agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was used to investigate oxy-radical production in post-ischemic rat hearts previously exposed to 20, 30, or 40 minutes of global ischemia. A hydroxyl spin adduct (DMPO-OH) was identified in coronary effluent during the initial seconds of reperfusion by Electron Spin Resonance (ESR) Spectroscopy. The intensity of the ESR signal in post-ischemic effluent increased as ischemic duration was prolonged; however, regardless of the duration of ischemia, maximal spin adduct detection occurred 3 minutes after initiation of reperfusion. Superoxide dismutase inhibited the formation of DMPO-OH, suggesting that superoxide anion was initially generated and is the principle source for the production on the hydroxyl adduct. Our investigations indicate that superoxide anion is produced during the early moments of reperfusion and that its production in the post-ischemic heart is related to the severity of ischemia.  相似文献   

19.
Electron spin resonance (ESR) and nuclear magnetic resonance (NMR) spin trapping were used for detection of free radical reactions utilizing a new fluorinated analog of DMPO, 4-hydroxy-5,5-dimethyl-2-trifluoromethylpyrroline-1-oxide (FDMPO). The parent FDMPO spin trap exhibits a single 19F-NMR resonance at -66.0 ppm. The signal to noise ratio improved 10.4-fold compared to 31P-NMR sensitivity of the phosphorus-containing spin trap, DEPMPO. The spin adducts of FDMPO with .OH, .CH3, and .CH2OH were characterized. Competitive spin trapping of FDMPO with DMPO showed that both have similar rates of addition of .OH and C-centered radicals. The corresponding paramagnetic spin adducts of FDMPO were extremely stable to degradation. In the presence of ascorbate, reaction products from C-centered radicals resulted in the appearance of two additional 19F-NMR signals at -78.6 and -80 ppm for FDMPO/ .CH(3) and at -74.6 and -76.75 ppm for FDMPO/ .CH(2)OH. In each case, these peaks were assigned to the two stereoisomers of their respective, reduced hydroxylamines. The identification of the hydroxylamines for FDMPO/ .CH3 was confirmed by EPR and 19F-NMR spectra of independently synthesized samples. In summary, spin adducts of FDMPO were highly stable for ESR. For NMR spin trapping, FDMPO showed improved signal to noise and similar spin trapping efficiency compared to DEPMPO.  相似文献   

20.
The superoxide dismutase-like activities of a series of coordination complexes of copper were evaluated and compared to the activities of bovine erythrocyte superoxide dismutase (superoxide: superoxide oxidoreductase, EC 1.15.1.1) in serum using the nitroblue tetrazolium chloride (NBT)-reduction assay and electron paramagnetic resonance (EPR) spectroscopy. A 40% inhibition was observed for the initial rate of the NBT reduction by superoxide dismutase in serum, but more than 40% inhibition was achieved with CuSO4, Cu(II)-dimethylglyoxime, Cu(II)-3,8-dimethyl-4,7-diazadeca-3,7-dienediamide, Cu2[N,N'-(2-(O-hydroxy-benzhydrylidene)amino)ethyl]2-1,2-ethane dia mine), Cu(II)-(diisopropylsalicylate)2, Cu(II)-(p-bromo-benzoate)2, Cu(II)-(nicotinate)2 and Cu(II)-(1,2-diamino-2-methylpropane)2. The electron paramagnetic resonance technique of spin trapping was used to detect the formation of superoxide (O2-.) and other free radicals in the xanthine-xanthine oxidase system under a variety of conditions. Addition of the spin trapping agent 5,5-dimethylpyrroline 1-oxide (DMPO) to the xanthine-xanthine oxidase system in fetal bovine serum produced the O2-.-spin adduct of DMPO (herein referred to as superoxide spin adduct, DMPO-OOH) as the well known short-lived nitroxyl whose characteristic EPR spectrum was recorded before its rapid decay to undetectable levels. The hydroxyl radical (HO.) adduct of the spin trap DMPO (herein referred to as DMPO-OH) was detected to a very small extent. When CuSO4, or the test complexes of copper, were added to the xanthine-xanthine oxidase system in serum containing the spin trap, the yield of DMPO-OOH was negligible. In addition to their superoxide dismutase-like activity, CuSO4 and the copper complexes also behaved as Fenton-type catalysts as seen by the accumulation of varying amounts of the hydroxyl spin adduct DMPO-OH. Both the Fenton-type catalysis and the superoxide dismutase-like action of these compounds were lost when a chelator such as EDTA was included in the xanthine-xanthine oxidase incubation mixture. Addition of superoxide dismutase instead of the copper compounds to this enzyme system abolished the formation of superoxide adduct DMPO-OOH, and no hydroxyl adduct DMPO-OH was detected. This effect of superoxide dismutase remained unaltered by EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号