首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a proteolytically sensitive enzyme essential for production of phosphatidylcholine, the major phospholipid of animal cell membranes. The molecular signals that govern CCTalpha protein stability are unknown. An NH(2)-terminal PEST sequence within CCTalpha did not serve as a degradation signal for the proteinase, calpain. Calmodulin (CaM) stabilized CCTalpha from calpain proteolysis. Adenoviral gene transfer of CaM in cells protected CCTalpha, whereas CaM small interfering RNA accentuated CCTalpha degradation by calpains. CaM bound CCTalpha as revealed by fluorescence resonance energy transfer and two-hybrid analysis. Mapping and site-directed mutagenesis of CCTalpha uncovered a motif (LQERVDKVK) harboring a vital recognition site, Gln(243), whereby CaM directly binds to the enzyme. Mutagenesis of CCTalpha Gln(243) not only resulted in loss of CaM binding but also led to complete calpain resistance in vitro and in vivo. Thus, calpains and CaM both access CCTalpha using a structurally similar molecular signature that profoundly affects CCTalpha levels. These data suggest that CaM, by antagonizing calpain, serves as a novel binding partner for CCTalpha that stabilizes the enzyme under proinflammatory stress.  相似文献   

3.
Prostaglandin (PG) D2, a major cyclooxygenase product in a variety of tissues and cells, readily undergoes dehydration to yield the bioactive cyclopentenone-type PGs of the J2 series, such as 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2). We have shown previously that 15d-PGJ2 is a potent electrophile that causes intracellular oxidative stress and redox alteration in human neuroblastoma SH-SY5Y cells. In the present study, based on the observation that the electrophilic center of 15d-PGJ2 was involved in the pro-oxidant effect, we investigated the role of thioredoxin 1 (Trx), an endogenous redox regulator, against 15d-PGJ2-induced oxidative cell injury. It was observed that the 15d-PGJ2-induced oxidative stress was significantly suppressed by the Trx overexpression. In addition, the treatment of SH-SY5Y cells with biotinylated 15d-PGJ2 resulted in the formation of a 15d-PGJ2-Trx adduct, indicating that 15d-PGJ2 directly modified the endogenous Trx in the cells. To further examine the mechanism of the 15d-PGJ2 modification of Trx, human recombinant Trx treated with 15d-PGJ2 was analyzed by mass spectrometry. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the 15d-PGJ2-treated human recombinant Trx demonstrated the addition of one molecule of 15d-PGJ2 per protein molecule. Moreover, the electrospray ionization-liquid chromatography/mass spectrometry/mass spectrometry analysis identified two cysteine residues, Cys-35 and Cys-69, as the targets of 15d-PGJ2. These residues may represent the direct sensors of the electrophilic PGs that induce the intracellular redox alteration and neuronal cell death.  相似文献   

4.
Protein glutathionylation is a posttranslational modification of cysteine residues with glutathione in response to mild oxidative stress. Because 15-deoxy-Δ12,14-prostaglandin J(2) (15d-PGJ(2)) is an electrophilic prostaglandin that can increase glutathione (GSH) levels and augment reactive oxygen species (ROS) production, we hypothesized that it induces NF-κB-p65 glutathionylation and would exert anti-inflammatory effects. Herein, we show that 15d-PGJ(2) suppresses the expression of ICAM-1 and NF-κB-p65 nuclear translocation. 15d-PGJ(2) upregulates the Nrf2-related glutathione synthase gene and thereby increases the GSH levels. Consistent with this, Nrf2 siRNA molecules abolish the inhibition of p65 nuclear translocation in 15d-PGJ(2)-induced endothelial cells (ECs). ECs treated with GSSG show increased thiol modifications of p65 and also a block in TNFα-induced p65 nuclear translocation and ICAM-1 expression, but not in IκBα degradation. However, the overexpression of glutaredoxin 1 was found to be accompanied by a modest increase in NF-κB activity. Furthermore, we found that multiple cysteine residues in p65 are responsible for glutathionylation. 15d-PGJ(2) was observed to induce p65 glutathionylation and is suppressed by a GSH synthesis inhibitor, buthionine sulfoximine, by catalase, and by Nrf2 siRNA molecules. Our results thus indicate that the GSH/ROS-dependent glutathionylation of p65 is likely to be responsible for 15d-PGJ(2)-mediated NF-κB inactivation and for the enhanced inhibitory effects of 15d-PGJ(2) on TNFα-treated ECs.  相似文献   

5.
6.
7.
TRPA1 is a member of the transient receptor potential (TRP) cation channel family, and is predominantly expressed in nociceptive neurons of dorsal root ganglia (DRG) and trigeminal ganglia. Activation of TRPA1 by environmental irritants such as mustard oil, allicin, and acrolein causes acute pain. However, the endogenous ligands that directly activate TRPA1 remain elusive in inflammation. Here, we show that a variety of inflammatory mediators (15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), nitric oxide (NO), hydrogen peroxide (H2O2), and proton (H+)) activate human TRPA1 heterologously expressed in HEK cells. These inflammatory mediators induced robust Ca2+ influx in a subset of mouse DRG neurons. The TRP channel blocker ruthenium red almost completely inhibited neuronal responses by 15d-PGJ2 and NO, but partially suppressed responses to H2O2 and H+. Functional characterization of site-directed cysteine mutants of TRPA1 in combination with labeling experiments using biotinylated 15d-PGJ2 demonstrated that modifications of cytoplasmic N-terminal cysteines (Cys421 and Cys621) were responsible for the activation of TRPA1 by 15d-PGJ2. In TRPA1 responses to other cysteine-reactive inflammatory mediators, such as NO and H2O2, the extents of impairment by respective cysteine mutations differed from those in TRPA1 responses to 15d-PGJ2. Interestingly, the Cys421 mutation critically impaired the TRPA1 response to H+ as well. Our findings suggest that TRPA1 channels are targeted by an array of inflammatory mediators to elicit inflammatory pain in the nervous system.  相似文献   

8.
TRPA1 is a member of the transient receptor potential (TRP) cation channel family, and is predominantly expressed in nociceptive neurons of dorsal root ganglia (DRG) and trigeminal ganglia. Activation of TRPA1 by environmental irritants such as mustard oil, allicin and acrolein causes acute pain. However, the endogenous ligands that directly activate TRPA1 remain elusive in inflammation. Here, we show that a variety of inflammatory mediators (15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), nitric oxide (NO), hydrogen peroxide (H(2)O(2)), and proton (H(+))) activate human TRPA1 heterologously expressed in HEK cells. These inflammatory mediators induced robust Ca(2+) influx in a subset of mouse DRG neurons. The TRP channel blocker ruthenium red almost completely inhibited neuronal responses by 15d-PGJ(2) and NO, but partially suppressed responses to H(2)O(2) and H(+). Functional characterization of site-directed cysteine mutants of TRPA1 in combination with labeling experiments using biotinylated 15d-PGJ(2) demonstrated that modifications of cytoplasmic N-terminal cysteines (Cys421 and Cys621) were responsible for the activation of TRPA1 by 15d-PGJ(2). In TRPA1 responses to other cysteine-reactive inflammatory mediators, such as NO and H(2)O(2), the extent of impairment by respective cysteine mutations differed from those in TRPA1 responses to 15d-PGJ(2). Interestingly, the Cys421 mutation critically impaired the TRPA1 response to H(+) as well. Our findings suggest that TRPA1 channels are targeted by an array of inflammatory mediators to elicit inflammatory pain in the nervous system.  相似文献   

9.
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a rate-regulatory enzyme required for phosphatidylcholine (PtdCho) synthesis. CCTalpha is also a phosphoenzyme, but the physiologic role of kinases on enzyme function remains unclear. We report high-level expression of two major isoforms of the c-Jun N-terminal kinase family (JNK1 and JNK2) in murine lung epithelia. Further, JNK1 and JNK2 phosphorylated purified CCTalpha in vitro, and this was associated with a dose-dependent decrease (approximately 40%) in CCT activity. To evaluate JNK in vivo, lung epithelial cells were infected with a replication defective adenoviral vector encoding murine JNK2 (Adv-JNK2) or an empty vector. Adv-JNK2 infection, unlike the empty vector, markedly increased JNK2 expression concomitant with increased incorporation of [32P]orthophosphate into endogenous CCTalpha. Although Adv-JNK2 infection only modestly reduced CCT activity, it reduced PtdCho synthesis by approximately 30% in cells. These observations suggest a role for JNK kinases as negative regulators of phospholipid synthesis in murine lung epithelia.  相似文献   

10.
Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 μM concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTPγS or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.  相似文献   

11.
12.
13.
Prostaglandin D(2) (PGD(2)), a major cyclooxygenase product in a variety of tissues and cells, readily undergoes dehydration to yield electrophilic PGs, such as 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)). We have previously shown that 15d-PGJ(2) potently induces apoptosis of SH-SY5Y human neuroblastoma cells via accumulation of the tumor suppressor gene product p53. In the study presented here, we investigated the molecular mechanisms involved in the 15d-PGJ(2)-induced accumulation of p53. It was observed that 15d-PGJ(2) potently induced p53 protein expression but scarcely induced p53 gene expression. In addition, exposure of the cells to 15d-PGJ(2) resulted in an accumulation of ubiquitinated proteins and in a significant inhibition of proteasome activities, suggesting that 15d-PGJ(2) acted on the ubiquitin-proteasome pathway, a regulatory mechanism of p53 turnover. The effects of 15d-PGJ(2) on the protein turnover were attributed to its electrophilic feature, based on the observations that (i) the reduction of the double bond in the cyclopentenone ring of 15d-PGJ(2) virtually abolished the effects on protein turnover, (ii) overexpression of an endogenous redox regulator, thioredoxin 1, significantly retarded the inhibition of proteasome activities and accumulations of p53 and ubiquitinated proteins induced by 15d-PGJ(2), and (iii) treatment of SH-SY5Y cells with biotinylated 15d-PGJ(2) indeed resulted in the formation of a 15d-PGJ(2)-proteasome conjugate. These data suggest that the modulation of proteasome activity may be involved in the mechanism responsible for the accumulation of p53 and subsequent induction of apoptotic cell death induced by 15d-PGJ(2).  相似文献   

14.
Phthalate esters are ubiquitous environmental contaminants that are produced for a variety of common industrial and commercial purposes. We have shown that mono-(2-ethylhexyl) phthalate (MEHP), the toxic metabolite of di-(2-ethylhexyl) phthalate, induces bone marrow B cell apoptosis that is enhanced in the presence of the endogenous prostaglandin 15-deoxy-Delta((12, 14))-PGJ(2) (15d-PGJ(2)). Here, studies were performed to determine whether 15d-PGJ(2)-mediated enhancement of MEHP-induced apoptosis represents activation of an overlapping or complementary apoptosis pathway. MEHP and 15d-PGJ(2) induced significant apoptosis within 8 and 5 h, respectively, in a pro/pre-B cell line and acted cooperatively to induce apoptosis in primary pro-B cells. Apoptosis induced with each chemical was accompanied by activation of a combination of initiator caspases (caspases-2, -8, and -9) and executed by caspase-3. Apoptosis induced with MEHP and 15d-PGJ(2) was reduced in APAF1 null primary pro-B cells and accompanied by alteration of mitochondrial membranes, albeit with different kinetics, indicating an intrinsically activated apoptosis pathway. Significant Bax translocation to the mitochondria supports its role in initiating release of cytochrome c. Both chemicals induced Bid cleavage, a result consistent with a truncated Bid-mediated release of cytochrome c in an apoptosis amplification feedback loop; however, significantly more Bid was cleaved following 15d-PGJ(2) treatment, potentially differentiating the two pathways. Indeed, Bid cleavage and cytochrome c release following 15d-PGJ(2) but not MEHP treatment was profoundly inhibited by Z-VAD-FMK, suggesting that 15d-PGJ(2) activates apoptosis via two pathways, Bax mobilization and protease-dependent Bid cleavage. Thus, endogenous 15d-PGJ(2)-mediated enhancement of environmental chemical-induced apoptosis represents activation of an overlapping but distinct signaling pathway.  相似文献   

15.
Ras proteins are crucial players in differentiation and oncogenesis and constitute important drug targets. The localization and activity of Ras proteins are highly dependent on posttranslational modifications at their C-termini. In addition to an isoprenylated cysteine, H-Ras, but not other Ras proteins, possesses two cysteine residues (C181 and C184) in the C-terminal hypervariable domain that act as palmitoylation sites in cells. Cyclopentenone prostaglandins (cyPG) are reactive lipidic mediators that covalently bind to H-Ras and activate H-Ras dependent pathways. Dienone cyPG, such as 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) and Δ(12)-PGJ(2) selectively bind to the H-Ras hypervariable domain. Here we show that these cyPG bind simultaneously C181 and C184 of H-Ras, thus potentially altering the conformational tendencies of the hypervariable domain. Based on these results, we have explored the capacity of several bifunctional cysteine reactive small molecules to bind to the hypervariable domain of H-Ras proteins. Interestingly, phenylarsine oxide (PAO), a widely used tyrosine phosphatase inhibitor, and dibromobimane, a cross-linking agent used for cysteine mapping, effectively bind H-Ras hypervariable domain. The interaction of PAO with H-Ras takes place in vitro and in cells and blocks modification of H-Ras by 15d-PGJ(2). Moreover, PAO treatment selectively alters H-Ras membrane partition and the pattern of H-Ras activation in cells, from the plasma membrane to endomembranes. These results identify H-Ras as a novel target for PAO. More importantly, these observations reveal that small molecules or reactive intermediates interacting with spatially vicinal cysteines induce intramolecular cross-linking of H-Ras C-terminus potentially contributing to the modulation of Ras-dependent pathways.  相似文献   

16.
Smad2 is an important factor in TGFbeta/Smad2 signal transduction pathway with ability for signal propagation, it could translocate from cytoplasm to nucleus after the TGFbeta receptor-mediated phosphorylation. 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), a natural agonist of the peroxisome proliferator-activated receptor gamma (PPARgamma), is found recently to be able to function in the regulation of Smad2 activity. However, no quantification data have been yet reported, and it still keeps suspenseful whether or not 15d-PGJ2 could regulate Smad2 activity by depending on PPARgamma through PPAR gamma/TGFbeta/ Smad2 pathway. In this work, by analyzing the EGFP-Smad2 location in CHO cells according to the Nucleus Trafficking Analysis Module based on IN Cell Analyzer 1000 platform, TGFbeta stimulated EGFP-Smad2 translocation regulated by 15d-PGJ2 was quantitatively investigated. The results showed that TGFbeta could induce EGFP-Smad2 translocation from cytoplasm to nucleus by EC50 of 8.83 pM, and 15d-PGJ2 could impede the TGFbeta-stimulated Smad2 translocation by IC50 of 0.68 microM. Moreover, GW9662, a PPARgamma antagonist, could attenuate such a 15d-PGJ2 inhibitory activity by almost one order of magnitude. This result thereby implies that 15d-PGJ2 might inhibit Smad2 translocation through PPARgamma/TGFbeta/Smad2 pathway. Further investigation discovered that different from the case for 15d-PGJ2, rosiglitazone, another PPARgamma agonist, could enhance Smad2 translocation to nucleus, suggesting that rosiglitazone and 15d-PGJ(2) might take different modes in the activation of PPARgamma within the signaling pathway.  相似文献   

17.
We investigated effects of pro-atherogenic oxidized lipoproteins on phosphatidylcholine (PtdCho) biosynthesis in murine lung epithelial cells (MLE-12). Cells surface-bound, internalized, and degraded oxidized low density lipoproteins (Ox-LDL). Ox-LDL significantly reduced [3H]choline incorporation into PtdCho in cells by selectively inhibiting the activity of the rate-regulatory enzyme, CTP:phosphocholine cytdylyltransferase (CCT). Ox-LDL coordinately increased the cellular turnover of CCTalpha protein as determined by [35S]methionine pulse-chase studies by inducing the calcium-activated proteinase, calpain. Forced expression of calpain or exposure of cells to the calcium ionophore, A23187, increased CCTalpha degradation, whereas overexpression of the endogenous calpain inhibitor, calpastatin, attenuated Ox-LDL-induced CCTalpha degradation. The effects of Ox-LDL on CCTalpha breakdown were attenuated in calpain-deficient cells. In vitro calpain digestion of CCTalpha isolated from cells transfected with truncated or internal deletion mutants indicated multiple cleavage sites within the CCTalpha primary structure, leading to the generation of a 26-kDa (p26) fragment. Calpain hydrolysis of purified CCTalpha generated p26, which upon NH2-terminal sequencing localized a calpain attack site within the CCTalpha amino terminus. Expression of a CCTalpha mutant where the amino-terminal cleavage site and a putative carboxyl-terminal hydrolysis region were modified resulted in an enzyme that was significantly less sensitive to proteolytic cleavage and restored the ability of cells to synthesize surfactant PtdCho after Ox-LDL treatment. Thus, these results provide a critical link between proatherogenic lipoproteins and their metabolic target, CCTalpha, resulting in impaired surfactant metabolism.  相似文献   

18.
19.
A natural ligand of peroxisome proliferator-activated receptor gamma (PPARgamma), 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), decreases endothelial nitric oxide synthase (eNOS) expression by an unknown mechanism. Here we found that 15d-PGJ(2)-induced eNOS reduction is inversely associated with heat shock protein 70 (HSP70) induction in endothelial cells. Treatment of cells with 15d-PGJ(2) decreased eNOS protein expression in a concentration- and time-dependent manner, but independently of PPARgamma with no effect on mRNA levels. Although 15d-PGJ(2) elicited endothelial apoptosis, inhibition of both pan-caspases and cathepsins failed to reverse reduction of eNOS protein. Interestingly, we observed that 15d-PGJ(2) induced HSP70 in a dose-dependent manner. Immunoprecipitation and heat shock treatment demonstrated that eNOS reduction was strongly related to HSP70 induction. Cellular fractionation revealed that treatment with 15d-PGJ(2) increased eNOS distribution 2.5-fold from soluble to insoluble fractions. These findings provide new insights into mechanisms whereby eNOS regulation by 15d-PGJ(2) is related to HSP70 induction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号