首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variation of the distribution of bacteriochlorophyll a (BChl a) between external antenna (LH2) and core complexes (LH1 + RC) of the photosynthetic membrane of the sulfur bacterium Allochromatium minutissimum was studied at light intensities of 5 and 90 Wt/m2 in the temperature range of 12–43°C. The increase of light intensity was shown to result in a 1.5-to 2-times increase of a photosynthetic unit (PSU). PSU sizes pass through a maximum depending on growth temperature, and the increase of light intensity (5 and 90 Wt/m2) results in a shift of the maximal PSU size to higher temperatures (15 and 20°C, respectively). In the narrow temperature interval of ~14–17°C, the ratio of light intensity to PSU size is typical of phototrophs: lower light intensity corresponds to larger PSU size. The pattern of PSU size change depending on light intensity was shown to differ at extreme growth temperatures (12°C and over 35°C). The comparison of Alc. minutissimum PSU size with the data on Rhodobacter capsulatus and Rhodopseudomonas palustris by measuring the effective optical absorption cross-section for the reaction of photoinhibition of respiration shows a two to four times greater size of light-harvesting antenna for Alc. minutissimum, which seems to correspond to the maximum possible limit for purple bacteria.  相似文献   

2.
Photosynthetic parameters including net photosynthetic rate (PN), transpiration rate (E), water-use efficiency (WUE), and stomatal conductance (gs) were studied in indoor C3 plants Philodendron domesticum (Pd), Dracaena fragans (Df), Peperomia obtussifolia (Po), Chlorophytum comosum (Cc), and in a CAM plant, Sansevieria trifasciata (St), exposed to various low temperatures (0, 5, 10, 15, 20, and 25°C). All studied plants survived up to 0°C, but only St and Cc endured, while other plants wilted, when the temperature increased back to room temperature (25°C). The PN declined rapidly with the decrease of temperature in all studied plants. St showed the maximum PN of 11.9 μmol m?2 s?1 at 25°C followed by Cc, Po, Pd, and Df. E also followed a trend almost similar to that of PN. St showed minimum E (0.1 mmol m?2 s?1) as compared to other studied C3 plants at 25°C. The E decreased up to ≈4-fold at 5 and 0°C. Furthermore, a considerable decline in WUE was observed under cold stress in all C3 plants, while St showed maximum WUE. Similarly, the gs also declined gradually with the decrease in the temperature in all plants. Among C3 plants, Pd and Po showed the maximum gs of 0.07 mol m?2 s?1 at 25°C followed by Df and Cc. However, St showed the minimum gs that further decreased up to ~4-fold at 0°C. In addition, the content of photosynthetic pigments [chlorophyll a, b, (a+b), and carotenoids] was varying in all studied plants at 0°C. Our findings clearly indicated the best photosynthetic potential of St compared to other studied plants. This species might be recommended for improving air quality in high-altitude closed environments.  相似文献   

3.
The demand for natural food colorants is growing as consumers question the use of artificial colorants more and more. The phycobiliprotein C-phycocyanin of Arthospira platensis is used as a natural blue colorant in certain food products. The thermoacidophilic red microalga Cyanidioschyzon merolae might provide an alternative source of phycocyanin. Cyanidioschyzon merolae belongs to the order Cyanidiophyceae of the phylum Rhodophyta. Its natural habitat are sulfuric hot springs and geysers found near volcanic areas in, e.g., Yellowstone National Park in the USA and in Java, Indonesia. It grows optimally at a pH between 0.5 and 3.0 and at temperatures up to 56 °C. The low pH at which C. merolae grows minimizes the risk of microbial contamination and could limit production loss. As C. merolae lacks a cell wall, phycocyanin with a high purity number of 9.9 could be extracted by an osmotic shock using a simple ultrapure water extraction followed by centrifugation. The denaturation midpoint at pH 5 was 83 °C, being considerably higher than the A. platensis phycocyanin (65 °C). The C. merolae phycocyanin was relatively stable at pH 4 and 5 up to 80 °C. The high thermostability at slightly acidic pH makes the C. merolae phycocyanin an interesting alternative to A. platensis phycocyanin as a natural blue food colorant.  相似文献   

4.
We conducted life table experiments on the freshwater rotifer Asplanchna brightwellii to analyze its demography when fed with prey items from several taxonomic groups (cladocerans, protozoans, and rotifers) and under two different temperature regimes (20 and 25°C); the aim of the study was to determine the preferred prey for A. brightwellii in terms of fitness (evaluated as reproductive success) among five cladoceran, protozoan, and rotifer preys, and to test which temperature (20 or 25°C) is better for life table parameters of Asplanchna. Our analysis identified Brachionus calyciflorus as the preferred prey for A. brightwellii based on life table statistics, ingestion rate and electivity indices. The greatest values for net reproductive rate and intrinsic growth rate were achieved when A. brightwellii was fed B. calyciflorus. Greater reproductive values (R o and r) were found at 25°C than at 20°C for A. brightwellii across the five prey species. We found significant differences in the ingestion rate and electivity index among zooplanktonic and benthic preys. The influence of temperature, the cost of predation, and how prey selection by A. brightwellii is influenced by: biomass, size, and swimming speed; they are discussed hoping to gain a better understanding of trophic transfers in zooplankton communities.  相似文献   

5.

Objective

To explore the combined effects of temperature and Daphnia-associated infochemicals on colony formation of Scenedesmus obliquus to faciliate harvesting the algal biomass.

Results

A three-parameter modified Gaussian model fitted the changes of the number of cells per particle in S. obliquus induced by Daphnia culture filtrate well under any temperature. Decreases in temperature enhanced the induced–colony formation of Scenedesmus. The maximum colony size at 15–25 °C was significantly larger than those at 30–35 °C. An additional 1 or 2 days at low temperature was needed to reach the maximum colony size, which indicates the best harvest time for algal biomass.

Conclusion

Induced-colony formation of Scenedesmus by Daphnia culture filtrate at 15–25 °C is recommended to settle algal cells. This condition facilitates harvesting the biomass.
  相似文献   

6.
This paper investigates the effect of temperature on nitrogen and carbon removal by aerobic granules from landfill leachate with a high ammonium concentration and low concentration of biodegradable organics. The study was conducted in three stages; firstly the operating temperature of the batch reactor with aerobic granules was maintained at 29 °C, then at 25 °C, and finally at 20 °C. It was found that a gradual decrease in operational temperature allowed the nitrogen-converting community in the granules to acclimate, ensuring efficient nitrification even at ambient temperature (20 °C). Ammonium was fully removed from leachate regardless of the temperature, but higher operational temperatures resulted in higher ammonium removal rates [up to 44.2 mg/(L h) at 29 °C]. Lowering the operational temperature from 29 to 20 °C decreased nitrite accumulation in the GSBR cycle. The highest efficiency of total nitrogen removal was achieved at 25 °C (36.8 ± 10.9 %). The COD removal efficiency did not exceed 50 %. Granules constituted 77, 80 and 83 % of the biomass at 29, 25 and 20 °C, respectively. Ammonium was oxidized by both aerobic and anaerobic ammonium-oxidizing bacteria. Accumulibacter sp., Thauera sp., cultured Tetrasphaera PAO and AzoarcusThauera cluster occurred in granules independent of the temperature. Lower temperatures favored the occurrence of denitrifiers of Zooglea lineage (not Z. resiniphila), bacteria related to Comamonadaceae, Curvibacter sp., Azoarcus cluster, Rhodobacter sp., Roseobacter sp. and Acidovorax spp. At lower temperatures, the increased abundance of denitrifiers compensated for the lowered enzymatic activity of the biomass and ensured that nitrogen removal at 20 °C was similar to that at 25 °C and significantly higher than removal at 29 °C.  相似文献   

7.
Banana fruit are highly sensitive to chilling injury (CI), while the effect of different degrees of CI on the subsequent fruit ripening is largely unknown. In the present work, ripening characteristic of banana fruit after storage at 7 °C for 3 days or for 8 days, and expression levels of eight genes associated with ethylene biosynthetic and signaling, including MaACS1, MaACO1, MaERS1, MaERS3, and MaEIL14, were investigated. The results showed that banana fruit stored at 7 °C for 8 days exhibited more severe chilling symptoms than those at 7 °C for 3 days. Compared with banana fruit stored at 7 °C for 8 days, which showed abnormal ripening, more decrease in fruit firmness, while higher increase in ethylene production and hue angle were observed in banana fruit stored at 7 °C for 3 days, which could ripening normally. Moreover, gene expression profiles during ripening revealed that ethylene biosynthetic and signaling genes were differentially expressed in peel and pulp of banana fruit after storage at 7 °C for 3 days and 7 °C for 8 days. In the peel of fruit storage at 7 °C for 3 days, expression levels of MaACS1, MaACO1, MaEIL1, and MaEIL2 increased remarkably while MaERS3, MaEIL1, and MaEIL4 were enhanced in the fruit after storage at 7 °C for 8 days. In the pulp, with the exception of MaACO1 and MaERS3, expression levels of other genes did not exhibit a significant difference, between the banana fruit storage at 7 °C for 3 days and 7 °C for 8 days. Taken together, our results suggest that differential expression of ethylene biosynthetic and signaling genes such as MaERS3, MaACO1, and MaEIL2, may be related to ripening behavior of banana fruit with different degrees of CI after cold storage.  相似文献   

8.
The effect of five constant temperatures of 21, 24, 27, 30 and 33 °C on adult life span, reproduction, oviposition behavior and larval developmental time of a bitter gourd inhabited coleopteran insect Epilachna dodecastigma (Wied.) (Coccinellidae) was determined in laboratory conditions under 70 ± 5 % relative humidity and a photoperiod of 12 L : 12 D. Larval developmental time of E. dodecastigma decreased as temperature increased from 21 to 33 °C. Life table data revealed that overall mortality was lowest at 27 °C and highest at 21 °C. Females lived longer than males at all temperatures; but longevity decreased with increase in temperature. Pre-oviposition period decreased significantly with increase in temperature up to 27 °C and thereafter increased at a slower rate; whereas oviposition period decreased significantly with increase in temperature. Fecundity and egg viability increased significantly with an increase in temperature up to 27 °C and thereafter decreased at a slower rate. The intrinsic rate of increase (r m ) was 0.1703, 0.1984, 0.2235, 0.2227 and 0.2181 day?1 at 21, 24, 27, 30 and 33 °C, respectively. The net reproductive rate and finite rate of increase was highest at 27 °C (R o  = 112.05; λ = 1.4233) and lowest at 21 °C (R o  = 51.23; λ = 1.2581).  相似文献   

9.
A knowledge of the rate of oxygen consumption is very important for the evaluation of many physiological and ecological problems. Among the many factors affecting respiratory rate, water temperature and body size are particularly considered here. The modifying effects of body size may be expressed mathematically by the allometric formula: y=b · w a , where b represents the rate of O2 consumption of an individual whose weight is expressed in a chosen metrical weight unity (i. e. in grams, ounces, etc.), anda represents the decrease of metabolic rate during growth. InArenicola the exponent is not the same at all temperatures tested. In most cases it lies between 0.7 and 0.8, i. e., between a weight proportional respiratory rate and a surface proportional one. Minimum values fora were found in experiments conducted in summer at 20° C and in spring at 15° C. They characterize an optimum efficiency of metabolism at these temperatures. Determinations of b demonstrated that metabolic rate ofArenicola is significantly less affected in spring (10° to 20° C) and autumn (10° to 25° C) than is usually known from biological processes. However, the temperature coefficients above and below these temperature ranges are very high. Another break in the temperature-rate curve could be demonstrated below 5° C in spring.  相似文献   

10.
We investigated the effects of low nocturnal temperature on photosynthetic apparatus of winter rapeseed (Brassica campestris L.). An artificial climate chamber was used to simulate the effects of low nocturnal temperature on seedling and stomatal morphology, chloroplast ultrastructure, photosynthetic parameters, and dry matter distribution and accumulation in two winter rapeseed cultivars, Longyou-7 (ultra coldresistant) and Tianyou-2 (weak cold resistance). Compared with those at diurnal/nocturnal temperatures of 20°/10°C (control), rapeseed seedlings at 20°/5°C had increased leaf chlorophyll content, deepened green leaf color, decreased stomatal conductance (Gs), intercellular CO2 concentration (Ci), and photosynthetic rate (Pn), and improved root/shoot ratio; the majority of stomata remained open in Longyou-7 while those in Tianyou-2 were mostly closed or semi-closed. At diurnal/nocturnal temperatures of 20°/–5°C, rapeseed seedlings had decreased leaf chlorophyll content with increased Ci but decreased Gs and Pn; Tianyou-2 exhibited ruptured chloroplast membrane, dissolved grana, broken stroma lamella, and decreased root/shoot ratio, whereas Longyou-7 had chloroplasts retaining partial structure of grana with a small amount of starch granules in guard cells. Low nocturnal temperature damaged the photosynthetic membrane of chloroplasts and reduced Pn in the leaves of winter rapeseed influencing photosynthetic processes in this crop. The reduction of Pn was mainly related to stomatal limitation at diurnal/nocturnal temperatures of 20°/5°C and non-stomatal limitation at diurnal/nocturnal temperatures of 20°/–5°C.  相似文献   

11.
Two new species, Talaromyces heiheensis from rotten wood and T. mangshanicus isolated from soil, are illustrated and described as new to science in sections Trachyspermi and Talaromyces. The phylogenetic positions of the two new species inferred from the internal transcribed spacer, beta-tubulin, calmodulin and RNA polymerase II second largest subunit regions were carried out. Talaromyces heiheensis is phylogenetically closely related to T. albobiverticillius, T. rubrifaciens, T. solicola and T. erythromellis, and characterised by slow growth on Czapek yeast autolysate agar at 25 °C, orange conidia en masse on malt extract agar at 25 °C, biverticillate and terverticillate conidiophores, acerose phialides and subglobose to ellipsoidal, smooth-walled conidia. Talaromyces mangshanicus is related to T. kendrickii, T. qii and T. thailandensis, and characterised by slow-growing colonies with absent or sparse sporulation on CYA agar at 25 °C, conidia en masse greyish purple, purplish red soluble pigment on yeast extract agar (YES) at 25 °C, biverticillate conidiophores, ampulliform phialides and subglobose to ellipsoidal conidia with echinulate walls. They are distinguished from the known species in culture characteristics on four standard media, microscopic features and sequence data.  相似文献   

12.
Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil–seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil–seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical–chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil–seawater interfaces over a large temperature interval.  相似文献   

13.
A new strain of Chlorella sp. (Chlorella-Arc), isolated from Arctic glacier melt water, was found to have high specific growth rates (μ) between 3 and 27 °C, with a maximum specific growth rate of 0.85 day?1 at 15 °C, indicating that this strain was a eurythermal strain with a broad temperature tolerance range. To understand its acclimation strategies to low and high temperatures, the physiological and biochemical responses of the Chlorella-Arc to temperature were studied and compared with those of a temperate Chlorella pyrenoidosa strain (Chlorella-Temp). As indicated by declining F v/F m, photoinhibition occurred in Chlorella-Arc at low temperature. However, Chlorella-Arc reduced the size of the light-harvesting complex (LHC) to alleviate photoinhibition, as indicated by an increasing Chl a/b ratio with decreasing temperatures. Interestingly, Chlorella-Arc tended to secrete soluble sugar into the culture medium with increasing temperature, while its intracellular soluble sugar content did not vary with temperature changes, indicating that the algal cells might suffer from osmotic stress at high temperature, which could be adjusted by excretion of soluble sugar. Chlorella-Arc accumulated protein and lipids under lower temperatures (<15 °C), and its metabolism switched to synthesis of soluble sugar as temperatures rose. This reflects a flexible ability of Chlorella-Arc to regulate carbon and energy distribution when exposed to wide temperature shifts. More saturated fatty acids (SFA) in Chlorella-Arc than Chlorella-Temp also might serve as the energy source for growth in the cold and contribute to its cold tolerance.  相似文献   

14.
Small heat shock proteins (sHSPs) constitute a large, diverse, and functionally uncharacterized family of heat shock proteins. To gain insight regarding the function of sHSPs in insects, we identified genes encoding two sHSPs, Cshsp22.9b and Cshsp24.3, from the rice pest Chilo suppressalis. The cDNAs of Cshsp22.9b and Cshsp24.3 encoded proteins of 206 and 216 amino acids with isoelectric points of 5.79 and 9.28, respectively. Further characterization indicated that both Cshsp22.9b and Cshsp24.3 lacked introns. Real-time quantitative PCR indicated that Cshsp22.9b and Cshsp24.3 were expressed at higher levels within the fat body as compared to other tissues (head, epidermis, foregut, midgut, hindgut, Malpighian tubules, and hemocytes). Expression of Cshsp22.9b and Cshsp24.3 was lowest in the hindgut and Malpighian tubules, respectively. Cshsp22.9b and Cshsp24.3 showed identical patterns in response to thermal stress from ?11 to 43 °C, and both genes were up-regulated by hot and cold temperatures. The mRNA (messenger ribonucleic acid) expression levels of Cshsp22.9b (KY701308) and Cshsp24.3 (KY701309) were highest after a 2-h exposure at 39 °C and started to decline at 42 °C. In response to cold temperatures, both Cshsp22.9b and Cshsp24.3 showed maximal expression after a 2-h exposure to ?3 °C. The two Cshsps were more responsive to hot than cold temperature stress and were not induced by mildly cold or warm temperatures. In conclusion, Cshsp22.9b and Cshsp24.3 could play a very important role in the regulation of physiological activities in C. suppressalis that are impacted by environmental stimuli.  相似文献   

15.
The consumption rate of an ectothermic predator is highly temperature-dependent and is a key driver of pest-predator population interactions. Not only average daily temperature, but also diurnal temperature variations may affect prey consumption and life history traits of ectotherms. In the present study, we evaluated the impact of temperature alternations on body size, predation capacity and oviposition rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) when presented with eggs of their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). For both predators, mean daily temperature as well as temperature alternation had a substantial impact on the number of prey consumed. At lower average temperatures, more eggs were killed under an alternating temperature regime (20 °C/5 °C and 25 °C/10 °C) than at the corresponding mean constant temperatures (15 and 20 °C). At higher average temperatures (>25 °C), however, the opposite was observed with higher numbers of prey killed at constant temperatures than at alternating temperatures. At 25 °C, temperature variation had no effect on the predation capacity. A similar trend as for the predation rates was observed for the oviposition rates of the phytoseiids. Body size of N. californicus was affected both by average daily temperature and temperature variation, with smaller adult females emerging at alternating temperatures than at constant temperatures, whereas for P. persimilis, temperature variation had no impact on its body size. Our results demonstrate that temperature variations are likely to affect biological control of T. urticae by the studied phytoseiid predators.  相似文献   

16.
Many phytopathogenic micro-organisms such as bacteria and fungi produce pectin methylesterases (PME) during plant invasion. Plants and insects also produce PME to degrade plant cell wall. In the present study, a thermostable pectin methylesterase (CtPME) from Clostridium thermocellum belonging to family 8 carbohydrate esterase (CE8) was cloned, expressed and purified. The amino acid sequence of CtPME exhibited similarity with pectin methylesterase from Erwinia chrysanthemi with 38% identity. The gene encoding CtPME was cloned into pET28a(+) vector and expressed using Escherichia coli BL21(DE3) cells. The recombinant CtPME expressed as a soluble protein and exhibited a single band of molecular mass approximately 35.2 kDa on SDS-PAGE gels. The molecular mass, 35.5 kDa of the enzyme, was also confirmed by MALDI-TOF MS analysis. Notably, highest protein concentration (11.4 mg/mL) of CtPME was achieved in auto-induction medium, as compared with LB medium (1.5 mg/mL). CtPME showed maximum activity (18.1 U/mg) against citrus pectin with >85% methyl esterification. The optimum pH and temperature for activity of CtPME were 8.5 and 50 °C, respectively. The enzyme was stable in pH range 8.0–9.0 and thermostable between 45 and 70 °C. CtPME activity was increased by 40% by 5 mM Ca2+ or Mg2+ ions. Protein melting curve of CtPME gave a peak at 80 °C. The peak was shifted to 85 °C in the presence of 5 mM Ca2+ ions, and the addition of 5 mM EDTA shifted back the melting peak to 80 °C. CtPME can be potentially used in food and textile industry applications.  相似文献   

17.
Cleruchoides noackae Lin and Huber (Hymenoptera: Mymaridae) is an egg parasitoid of Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae). The parasitism and development of C. noackae was studied in T. peregrinus eggs of different ages, laid on eucalyptus leaves or paper towel and stored at 5 °C. The emergence, sex ratio and development of C. noackae and hatched nymphs of T. peregrinus were evaluated. This parasitoid had an emergence rate higher than 60% from zero to one, one to two, and two to three-day old eggs and lower than 10% for those 3–4 and 4–5 days old. The female proportion was 78% and the egg-adult period for C. noackae was 19.5 days. The use of T. peregrinus eggs up to three days old, laid on paper towel and stored at 5 °C for 14 days did not affect the biological parameters of C. nockae and should be used for mass rearing of this parasitoid.  相似文献   

18.
Oil-degrading bacteria were isolated from soil and water samples taken in Russia, Kazakhstan, and the Antarctic; 13 of 86 strains proved to be thermotolerant. These bacteria utilized crude oil at 45–50°C; their growth optimum (35–37°C) and range (20–53°C) differ from those of mesophilic bacteria. Thermotolerant strains were identified as representatives of the genera Rhodococcus and Gordonia. It was shown that their ability to degrade petroleum products does not differ at 24 and 45°C. The strains Rhodococcus sp. Par7 and Gordonia sp. 1D utilized 14 and 20% of the oil, respectively, in 14 days at 45°C. All of the isolated thermotolerant bacteria grew in a medium containing 3% NaCl; the medium for the strains Gordonia amicalis 1B and Gordonia sp. 1D contained up to 10% NaCl. The bacteria G. amicalis and Rhodococcus erythropolis were able to utilize crude oil and individual hydrocarbons at higher (up to 50°C) temperatures.  相似文献   

19.
20.

Objectives

To characterize a novel ene-reductase from Meyerozyma guilliermondii and achieve the ene-reductase-mediated reduction of activated C=C bonds.

Results

The gene encoding an ene-reductase was cloned from M. guilliermondii. Sequence homology analysis showed that MgER shared the maximal amino acid sequence identity of 57 % with OYE2.6 from Scheffersomyces stipitis. MgER showed the highest specific activity at 30 °C and pH 7 (100 mM sodium phosphate buffer), and excellent stereoselectivities were achieved for the reduction of (R)-carvone and ketoisophorone. Under the reaction conditions (30 °C and pH 7.0), 150 mM (R)-carvone could be completely converted to (2R,5R)-dihydrocarvone within 22 h employing purified MgER as catalyst, resulting in a yield of 98.9 % and an optical purity of >99 % d.e.

Conclusion

MgER was characterized as a novel ene-reductase from yeast and showed great potential for the asymmetric reduction of activated C=C bonds of α,β-unsaturated compounds.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号