首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CO<Subscript>2</Subscript> bio-mitigation using microalgae   总被引:4,自引:0,他引:4  
Microalgae are a group of unicellular or simple multicellular photosynthetic microorganisms that can fix CO(2) efficiently from different sources, including the atmosphere, industrial exhaust gases, and soluble carbonate salts. Combination of CO(2) fixation, biofuel production, and wastewater treatment may provide a very promising alternative to current CO(2) mitigation strategies.  相似文献   

2.
The thermal stability and activity of enzymes in supercritical carbon dioxide (SC CO(2)) and near-critical propane were studied at a pressure of 300 bar in the temperature range 20-90 degrees C. Proteinase from Carica papaya was incubated in microaqueous SC CO(2) at atmospheric pressure in a nonaqueous system. Lipase stability in an aqueous medium at atmospheric pressure and in SC CO(2) as well as near-critical propane at 100 bar and 40 degrees C was studied. In order to investigate the impact of solvent on lipases, these were chosen from different sources: Pseudomonas fluorescences, Rhizpous javanicus, Rhizopus niveus and porcine pancreas. On the basis of our previous study on lipase activities in dense gases, a high-pressure continuous flat-shape membrane reactor was designed. The hydrolysis of sunflower oil in SC CO(2) was performed as a model reaction in this reactor. The reaction was catalyzed by the lipase preparation Lipolase 100T and was performed at 50 degrees C and 200 bar.  相似文献   

3.

Introduction

The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour.

Results

Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible.

Conclusions

As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content.
  相似文献   

4.
The effects of high atmospheric CO2 concentration ([CO2]) on ecosystem processes have been explored using temporal facilities such as open-top-chambers and free-air CO2 enrichment. However, the effects of high [CO2] on soil properties takes decades and may not be captured by short-term experiments. Natural CO2 springs provide a unique opportunity to study the long-term effects of high [CO2]. In this study, we investigated soil properties at a natural CO2 spring. We found that the amounts of total carbon (C) and nitrogen (N) stored in the soil at the high [CO2] site exceeded those in the reference site by 60 and 30%, respectively. The effects of high [CO2] were large in the upper slope position where the canopy openness was high and plants grew faster, but no effects were detected in the lowest position where the canopy openness was lower (half of that at the upper slope position). In contrast, effects of high [CO2] on soil N dynamics, such as N mineralization and nitrification rates, did not exhibit a slope gradient. This suggests that effects of high [CO2] differed among soil stoichiometric characteristics and N dynamics. These complicated effects of high [CO2] imply that the future effects of high [CO2] on ecosystems could vary widely in conjunction with environmental conditions such as light availability and/or topographic conditions.  相似文献   

5.
A number of methods for carbon capture, more specifically, CO2 capture have been researched in the past few years. One such method is electrochemical CO2 reduction to biomethane which also serves the purpose of biogas upgradation using microbial electrosynthesis systems. This technology is also known as Power to Gas technology and the review starts with the importance and requirement of PtG in the modern world by studying energy production and consumption patterns in Europe, with a focus on Norway. The paper summarises the recent works and concepts in the field of bioelectrochemical systems with a focus on electron transfer mechanisms, biocatalysts and reactor designs. Works and gaps in the studies of direct interspecies electron transfer and biocathode developments are discussed in detail. This is followed by a discussion explaining various reactor designs, the advantages of single chambered microbial reactors and the importance of reactors that combine anaerobic digestion with microbial electrolysis cells.  相似文献   

6.
Profiles of subsurface soil CO2 concentration, soil temperature, and soil moisture, and throughfall were measured continuously during the years 2005 and 2006 in 16 locations at the free air CO2 enrichment facility situated within a temperate loblolly pine (Pinus taeda L.) stand. Sampling at these locations followed a 4 by 4 replicated experimental design comprised of two atmospheric CO2 concentration levels (ambient [CO2]a, ambient + 200 ppmv, [CO2]e) and two soil nitrogen (N) deposition levels (ambient, ambient + fertilization at 11.2 gN m−2 year−1). The combination of these measurements permitted indirect estimation of belowground CO2 production and flux profiles in the mineral soil. Adjacent to the soil CO2 profiles, direct (chamber-based) measurements of CO2 fluxes from the soil–litter complex were simultaneously conducted using the automated carbon efflux system. Based on the measured soil CO2 profiles, neither [CO2]e nor N fertilization had a statistically significant effect on seasonal soil CO2, CO2 production, and effluxes from the mineral soil over the study period. Soil moisture and temperature had different effects on CO2 concentration depending on the depth. Variations in CO2 were mostly explained by soil temperature at deeper soil layers, while water content was an important driver at the surface (within the first 10 cm), where CO2 pulses were induced by rainfall events. The soil effluxes were equal to the CO2 production for most of the time, suggesting that the site reached near steady-state conditions. The fluxes estimated from the CO2 profiles were highly correlated to the direct measurements when the soil was neither very dry nor very wet. This suggests that a better parameterization of the soil CO2 diffusivity is required for these soil moisture extremes.  相似文献   

7.
The chemistry induced by atmospheric pressure DC discharges above a water surface in CO(2)/N(2)/H(2)O mixtures was investigated. The gaseous mixtures studied represent a model prebiotic atmosphere of the Earth. The most remarkable changes in the chemical composition of the treated gas were the decomposition of CO(2) and the production of CO. The concentration of CO increased logarithmically with the increasing input energy density and an increasing initial concentration of CO(2) in the gas. The highest achieved concentration of CO was 4.0 +/- 0.6 vol. %. The production of CO was crucial for the synthesis of organic species, since reactions of CO with some reactive species generated in the plasma, e. g. H* or N* radicals, were probably the starting point in this synthesis. The presence of organic species (including the tentative identification of some amino acids) was demonstrated by the analysis of solid and liquid samples by high-performance liquid chromatography, infrared absorption spectroscopy and proton-transfer-reaction mass spectrometry. Formation of organic species in a completely inorganic CO(2)/N(2)/H(2)O atmosphere is a significant finding for the theory of the origins of life.  相似文献   

8.
An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.  相似文献   

9.
Holtum JA  Winter K 《Planta》2003,218(1):152-158
Do short-term fluctuations in CO2 concentrations at elevated CO2 levels affect net CO2 uptake rates of plants? When exposed to 600 μl CO2 l?1, net CO2 uptake rates in shoots or leaves of seedlings of two tropical C3 tree species, teak (Tectona grandis L. f.) and barrigon [Pseudobombax septenatum (Jacq.) Dug.], increased by 28 and 52% respectively. In the presence of oscillations with half-cycles of 20 s, amplitude of ca. 170 μl CO2 l?1 and mean of 600 μl CO2 l?1, the stimulation in net CO2 uptake by the two species was reduced to 19 and 36%, respectively, i.e. the CO2 stimulation in photosynthesis associated with a change in exposure from 370 to 600 μl CO2 l?1 was reduced by a third in both species. Similar reductions in CO2-stimulated net CO2 uptake were observed in T. grandis exposed to 40-s oscillations. Rates of CO2 efflux in the dark by whole shoots of T. grandis decreased by 4.8% upon exposure of plants grown at 370 μl CO2 l?1 to 600 μl CO2 l?1. The potential implications of the observations on CO2 oscillations and dark respiration are discussed in the context of free-air CO2 enrichment (FACE) systems in which short-term fluctuations of CO2 concentration are a common feature.  相似文献   

10.

Background and aims

Saline and alkali soils severely impact plant growth. Endophyte and plant associations are known to significantly modify plant metabolism. This study reports the effects of a type of endophyte on organic acid (OA) accumulation and ionic balance in rice under Na2CO3 stress.

Methods

Rice seedlings with (E+) and without (E-) endophytic infection were subjected to different levels of Na2CO3 stress (0, 5, 10, 15, and 20 mM) for two weeks. Organic acids and mineral elements in the leaves and roots were determined.

Results

Seedlings with endophytic infection accumulated mainly citrate and fumarate, with some malate and succinate in the leaves. In the roots, accumulation of malate and fumarate was enhanced significantly by endophytic infection, while less citrate and succinate was accumulated under Na2CO3 stress, which suggested that leaves and roots use different mechanisms to control OA metabolism. Endophytes reduced the total Na and Na:K ratios, but increased ST values, the percent changes of other measured nutrients, Chl content, and dry weight per plant under Na2CO3 stress.

Conclusions

Endophytic infection plays a key role in maintaining plant growth by improving nutrient uptake and adjusting OA accumulation under Na2CO3 stress. The application of endophytes can enhance the resistance of rice to salinity.
  相似文献   

11.
We present a new soil respiration model, describe a formal model testing procedure, and compare our model with five alternative models using an extensive data set of observed soil respiration. Gas flux data from rangeland soils that included a large number of measurements at low temperatures were used to model soil CO2 emissions as a function of soil temperature and water content. Our arctangent temperature function predicts that Q10 values vary inversely with temperature and that CO2 fluxes are significant below 0 °C. Independent data representing a broad range of ecosystems and temperature values were used for model testing. The effects of plant phenology, differences in substrate availability among sites, and water limitation were accounted for so that the temperature equations could be fairly evaluated. Four of the six tested models did equally well at simulating the observed soil CO2 respiration rates. However, the arctangent variable Q10 model agreed closely with observed Q10 values over a wide range of temperatures (r2 = 0.94) and was superior to published variable Q10 equations using the Akaike information criterion (AIC). The arctangent temperature equation explained 16–85% of the observed intra-site variability in CO2 flux rates. Including a water stress factor yielded a stronger correlation than temperature alone only in the dryland soils. The observed change in Q10 with increasing temperature was the same for data sets that included only heterotrophic respiration and data sets that included both heterotrophic and autotrophic respiration.  相似文献   

12.
Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of 3 months (June–August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms with overall fluxes of 1341 and 988 mg CO2 m?2 h?1, respectively, at the 2000 and 2006 plantations, respectively. The mean heterotrophic flux was 909 ± SE 136 and 716 ± SE 201 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 845 ± SE 135 and 1558 ± SE 341 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m?2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage.  相似文献   

13.
Current manufacturing of most bulk chemicals through petrochemical routes considerably contributes to common concerns over the depletion of fossil carbon sources and greenhouse gas emissions. Sustainable future production of commodities thus requires the shift to renewable feedstocks in combination with established or newly developed synthesis routes. In this study, the potential of Cupriavidus necator H16 for autotrophic synthesis of the building block chemical 2-hydroxyisobutyric acid (2-HIBA) is evaluated. A novel biosynthetic pathway was implemented by heterologous expression of the 2-hydroxyisobutyryl-coenzyme A (2-HIB-CoA) mutase from Aquincola tertiaricarbonis L108, relying on a main intermediate of strain H16’s C4 overflow metabolism, 3-hydroxybutyryl-CoA. The intention was to direct the latter to 2-HIBA instead or in addition to poly-3-hydroxybutyrate (PHB). Autotrophic growth and 2-HIBA (respectively, PHB) synthesis of wild-type and PHB-negative mutant strains were investigated producing maximum 2-HIBA titers of 3.2 g L?1 and maximum specific 2-HIBA synthesis rates (q 2-HIBA) of about 16 and 175 μmol g?1 h?1, respectively. The obtained specific productivity was the highest reported to date for mutase-dependent 2-HIBA synthesis from heterotrophic and autotrophic substrates. Furthermore, expression of a G protein chaperone (MeaH) in addition to the 2-HIB-CoA mutase subunits yielded improved productivity. Analyzing the inhibition of growth and product synthesis due to substrate availability and product accumulation revealed a strong influence of 2-HIBA, when cells were cultivated at high titers. Nevertheless, the presented results imply that at the time the autotrophic synthesis route is superior to thus far established heterotrophic routes for production of 2-HIBA with C. necator.  相似文献   

14.
An experimental study to estimate the effect of clear-cutting on CO2 emission from the soil surface was performed using the chamber method. For field measurements, several experimental plots within the clear-cut with different degrees of damage of the upper organic soil layer and different amounts of litter and logging residue on the surface were selected. Soil CO2 fluxes were simultaneously measured both on the clear-cutting plots and on two plots within the spruce forest stand located close to the clear-cut area. The results show a significant seasonal and diurnal variability of soil CO2 emission. It was found that the soil respiration rate varies significantly among plots and depends on the damage to the upper soil layer and the availability of litter and logging residue on the soil surface. It was found that the rate of CO2 emission from soil surface is strongly dependent on the air and soil temperature and moisture of the upper soil layer. Different rates of soil respiration are also revealed on the plots located at different distances from tree trunks within the control forest stand.  相似文献   

15.
It is plausible that the nutritional quality of C3 plants will decline more under elevated atmospheric CO2 than will the nutritional quality of C4 plants, causing herbivorous insects to increase their feeding on C3 plants relative to C4 plants. We tested this hypothesis with a C3 and C4 grass and two caterpillar species with different diet breadths. Lolium multiflorum (C3) and Bouteloua curtipendula (C4) were grown in outdoor open top chambers at ambient (370 ppm) or elevated (740 ppm) CO2. Bioassays compared the performance and digestive efficiencies of Pseudaletia unipuncta (a grass-specialist noctuid) and Spodoptera frugiperda (a generalist noctuid). As expected, the nutritional quality of L. multiflorum changed to a greater extent than did that of B. curtipendula when grown in elevated CO2; levels of protein (considered growth limiting) declined in the C3 grass, while levels of carbohydrates (sugar, starch and fructan) increased. However, neither insect species increased its feeding rate on the C3 grass to compensate for its lower nutritional quality when grown in an elevated CO2 atmosphere. Consumption rates of P. unipuncta and S. frugiperda were higher on the C3 grass than the C4 grass, the opposite of the result expected for a compensatory response to the lower nutritional quality of the C4 grass. Although our results do not support the hypothesis that grass-specialist insects compensate for lower nutritional quality by increasing their consumption rates more than do generalist insects, the performance of the specialist was greater than that of the generalist on each grass species and at both CO2 levels. Mechanisms other than compensatory feeding, such as increased nutrient assimilation efficiency, appear to determine the relative performance of these herbivores. Our results also provide further evidence against the hypothesis that C4 grasses would be avoided by insect herbivores because a large fraction of their nutrients is unavailable to herbivores. Instead, our results are consistent with the hypothesis that C4 grasses are poorer host plants primarily because of their lower nutrient levels, higher fiber levels, and greater toughness.  相似文献   

16.
Tropical peatlands release significant quantities of greenhouse gases to the atmosphere, yet the relative contributions of heterotrophic and autotrophic respiration to net CO2 fluxes remains sparsely quantified. We used a combination of in situ trenching and vegetation removal in ex situ pots to quantify root-derived CO2 under two plant functional types within a mixed species forest. Trenching significantly reduced surface CO2 flux, indicating that approximately two-thirds of the released CO2 was derived from roots. In contrast, ex situ vegetation removal in pots indicated that root-derived CO2 accounted for 27% of the total CO2 flux for Campnosperma panamensis, a broadleaved evergreen tree, and 49% for Raphia taedigera, a canopy palm. The results show that root-derived CO2 is a major contribution to net CO2 emissions in tropical peatlands, and that the magnitude of the emissions is affected by plant species composition. This is important in the context of land use change driving alterations in vegetation cover.  相似文献   

17.
Using a radiogasometric method the rates of photorespiratory and respiratory decarboxylations of primary and stored photosynthates in the leaves of two groups of C3 species, differing in the ability of starch accumulation, were determined. One group included starch-accumulating (SA) species with rates of starch synthesis on the average 38 % the rate of photosynthesis [Solanum tuberosum L., Arabidopsis thaliana (L.) Heynh, Helianthus annuus L., and Plantago lanceolata L.]. The second group represented starch-deficient (SD) species with rates of starch synthesis less than 8 % the rate of photosynthesis (Secale cereale L., Triticum aestivum L., Hordeum vulgare L., and Poa trivialis L.). In SA species the rate of respiration in the dark was significantly higher than in SD species. No differences were found in the rates of photosynthesis, photorespiration, and respiration under irradiation. Thus, the degree of inhibition of respiration by irradiation was in SA species higher than in SD species. It is concluded that starch does not provide substrates for respiratory and photorespiratory decarboxylations in irradiated photosynthesizing leaves.  相似文献   

18.
Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO2, H2, and N2 were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO2 uptake was estimated from the addition of CO2 as acidic titrant and O2 evolution was estimated from titration by H2, which was used to reduce O2 over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O2 evolution and CO2 up-take rates. NH4 +, NO2 , or NO3 was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH4 + as the nitrogen source and 1.3 when NO3 was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3–4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO2 and H2 into the reactor headspace to estimate the up-take of CO2, the production of O2, and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified.  相似文献   

19.
In many coastal areas of South-East Asia, attempts have been made to revive coastal ecosystem by initiating projects that encourage planting of mangrove trees. Compared to the terrestrial trees, mangrove trees possess a higher carbon fixation capacity. It becomes a very significant option for clean development mechanism (CDM) program. However, a reliable method to estimate CO2 fixation capacity of mangrove trees has not been established. Acknowledging the above fact, we decided to set up an estimation method for the CDM program, using gas exchange analysis to estimate mangrove productivity, we put into consideration the net CO2 fixation of reforested Kandelia candel (5-, 10-, and 15-year-old stand). This was estimated by gas exchange analysis and growth curve analysis. In growth curve analysis, we drew a growth curve of a single stand using data of above- and below-ground biomass. In the gas exchange analysis, we calculated CO2 fixation capacity by (1) measuring respiration rate of each organ of stand and calculating respiratory CO2 emission from above- to below-ground biomass. (2) Measuring the single-leaf photosynthetic rate in response to light intensity and calculating the photosynthetic CO2 absorption. (3) We also developed a model for the diurnal changes in temperature, and monthly averages based on one-day estimation of CO2 absorption and emission, which we corrected by this model in order to estimate the net CO2 fixation capacity in response to temperature. Comparing the biomass accumulation of the two methods constructed for the same forest, the above-ground biomass accumulation of 10-year-old forest (34.3 ton ha−1 yr−1) estimated by gas exchange analysis was closely compared to those of growth curve analysis (26.6 ton ha−1 yr−1), suggesting that the gas exchange analysis was capable of estimating mangrove productivity. The validity of the estimated CO2 fixation capacity by the gas exchange analysis and the growth curve analysis was also discussed.  相似文献   

20.
Wood-decaying fungi are regarded as the main decomposers of woody debris in boreal forests. Given that fungal respiration makes a significant contribution to terrestrial carbon flows, it is important to understand how the wood-decaying fungal metabolism is regulated in relation to different environmental conditions and disturbances. In the present study, we investigated the effect of temperature stress on wood decomposition rate in 18 species of wood-decaying fungi, representing a broad range of species–habitat associations. Heat shock duration and temperature were calibrated to match the conditions of a forest fire. We found a general increase in fungal decay rate after heat shock; the response was more pronounced in species associated with fire-prone forests. The underlying mechanism is unclear, but possibly relates to an up-regulation at the cellular level in response to heat shock. Our results show that the decomposition rate of dead wood can be strongly affected by environmental triggers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号