首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Superoxide dismutase (SOD) proteins, which are widely present in the plant kingdom, play vital roles in response to abiotic stress. However, the functions of cucumber SOD genes in response to environmental stresses remain poorly understood. In this study, a SOD gene CsCSD1 was identified and functionally characterized from cucumber (Cucumis sativus). The CsCSD1 protein was successfully expressed in E. coli, and its overexpression significantly improved the tolerance of host E. coli cells to salinity stress. Besides, overexpression of CsCSD1 enhanced salinity tolerance during germination and seedling development in transgenic Arabidopsis plants. Further analyses showed that the SOD and CAT (catalase) activities of transgenic plants were significantly higher than those of wild-type (WT) plants under normal growth conditions as well as under NaCl treatment. In addition, the expression of stress-response genes RD22, RD29B and LEA4-5 was significantly elevated in transgenic plants. Our results demonstrate that the CsCSD1 gene functions in defense against salinity stress and may be important for molecular breeding of salt-tolerant plants.  相似文献   

3.

Objective

To determine the effects of carbohydrate-binding modules (CBMs) on the thermostability and catalytic efficiency of chitosanase CsnA.

Results

Three CBMs (BgCBM5, PfCBM32-2 and AoCBM35) were engineered at the C-terminus of chitosanase CsnA to create hybrid enzymes CsnA-CBM5, CsnA-CBM32 and CsnA-CBM35. K m values of all the hybrid enzymes were lower than that of the wild type (WT) enzyme; however, only CsnA-CBM5 had an elevated specific activity and catalytic efficiency. The fusion of BgCBM5 enhanced the thermostability of the enzyme, which exhibited a 8.9 °C higher T50 and a 2.9 °C higher Tm than the WT. Secondary structural analysis indicated that appending BgCBM5 at the C-terminus considerably changed the secondary structure content.

Conclusions

The fusion of BgCBM5 improved the thermal stability of CsnA, and the obtained hybrid enzyme (CsnA-CBM5) is a useful candidate for industrial application.
  相似文献   

4.
Superoxide dismutase (SOD) is an antioxidant enzyme protecting cells from oxidative stress. Ginger (Zingiber officinale) is known for its antioxidant properties, however, there are no data on SODs from ginger rhizomes. In this study, we purified SOD from the rhizome of Z. officinale (Zo-SOD) and determined its complete amino acid sequence using N terminal sequencing, amino acid analysis, and de novo sequencing by tandem mass spectrometry. Zo-SOD consists of 151 amino acids with two signature Cu/Zn-SOD motifs and has high similarity to other plant Cu/Zn-SODs. Multiple sequence alignment showed that Cu/Zn-binding residues and cysteines forming a disulfide bond, which are highly conserved in Cu/Zn-SODs, are also present in Zo-SOD. Phylogenetic analysis revealed that plant Cu/Zn-SODs clustered into distinct chloroplastic, cytoplasmic, and intermediate groups. Among them, only chloroplastic enzymes carried amino acid substitutions in the region functionally important for enzymatic activity, suggesting that chloroplastic SODs may have a function distinct from those of SODs localized in other subcellular compartments. The nucleotide sequence of the Zo-SOD coding region was obtained by reverse-translation, and the gene was synthesized, cloned, and expressed. The recombinant Zo-SOD demonstrated pH stability in the range of 5–10, which is similar to other reported Cu/Zn-SODs, and thermal stability in the range of 10–60?°C, which is higher than that for most plant Cu/Zn-SODs but lower compared to the enzyme from a Z. officinale relative Curcuma aromatica.  相似文献   

5.
The histone-like DNA-binding proteins (HU) serve as model molecules for protein thermostability studies, as they function in different bacteria that grow in a wide range of temperatures and show sequence diversity under a common fold. In this work, we report the cloning of the hutth gene from Thermus thermophilus, the purification and crystallization of the recombinant HUTth protein, as well as its X-ray structure determination at 1.7 Å. Detailed structural and thermodynamic analyses were performed towards the understanding of the thermostability mechanism. The interaction of HUTth protein with plasmid DNA in solution has been determined for the first time with MST. Sequence conservation of an exclusively thermophilic order like Thermales, when compared to a predominantly mesophilic order (Deinococcales), should be subject, to some extent, to thermostability-related evolutionary pressure. This hypothesis was used to guide our bioinformatics and evolutionary studies. We discuss the impact of thermostability adaptation on the structure of HU proteins, based on the detailed evolutionary analysis of the Deinococcus–Thermus phylum, where HUTth belongs. Furthermore, we propose a novel method of engineering thermostable proteins, by combining consensus-based design with ancestral sequence reconstruction. Finally, through the structure of HUTth, we are able to examine the validity of these predictions. Our approach represents a significant advancement, as it explores for the first time the potential of ancestral sequence reconstruction in the divergence between a thermophilic and a mainly mesophilic taxon, combined with consensus-based engineering.  相似文献   

6.

Objective

The 9_2 carbohydrate-binding module (C2) locates natively at the C-terminus of the GH10 thermophilic xylanase from Thermotoga marimita. When fused to the C-terminus, C2 improved thermostability of a GH11 xylanase (Xyn) from Aspergillus niger. However, a question is whether the C-terminal C2 would have a thermostabilizing effect when fused to the N-terminus of a catalytic module.

Results

A chimeric enzyme, C2-Xyn, was created by step-extension PCR, cloned in pET21a(+), and expressed in E. coli BL21(DE3). The C2-Xyn exhibited a 2 °C higher optimal temperature, a 2.8-fold longer thermostability, and a 4.5-fold higher catalytic efficiency on beechwood xylan than the Xyn. The C2-Xyn exhibited a similar affinity for binding to beechwood xylan and a higher affinity for oat-spelt xylan than Xyn.

Conclusion

C2 is a thermostabilizing carbohydrate-binding module and provides a model of fusion at an enzymatic terminus inconsistent with the modular natural terminal location.
  相似文献   

7.
8.
9.
Cytosolic ascorbate peroxidase 1 (APX1) plays a crucial role in regulating the level of plant cellular reactive oxygen species and its thermolability is proposed to cause plant heat-susceptibility. Herein, several hyper-acidic fusion partners, such as the C-terminal peptide tails, were evaluated for their effects on the thermal stability and activity of APX1 from Jatropha curcas and Arabidopsis. The hyper-acidic fusion partners efficiently improved the thermostability and prevented thermal inactivation of APX1 in both plant species with an elevated heat tolerance of at least 2 °C. These hyper-acidified thermostable APX1 fusion variants are of considerable biotechnological potential and can provide a new route to enhance the heat tolerance of plant species especially of inherent thermo-sensitivity.  相似文献   

10.

Objective

To isolate a thermostable pyrimidine nucleoside phosphorylase (PyNP) from mesophilic bacteria by gene mining.

Results

BbPyNP from Brevibacillus borstelensis LK01 was isolated by gene mining. BbPyNP had a highest 60% identity with that of reported PyNPs. BbPyNP could catalyze the phosphorolysis of thymidine, 2′-deoxyuridine, uridine and 5-methyuridine. BbPyNP had good thermostability and retained 73% of its original activity after 2 h incubation at 50 °C. BbPyNP had the highest activity at an optimum alkaline pH of 8.5. BbPyNP was stable from pH 7 to 9.8. Under preliminary optimized conditions, the biosynthesis of various 5-halogenated pyrimidine nucleosides by BbPyNP reached the yield of 61–84%.

Conclusion

An efficient approach was estimated in isolating thermostable PyNP from mesophilic bacteria.
  相似文献   

11.
Thermostable lipases offer major biotechnological advantages over mesophilic lipases. In this study, an intracellular thermostable and organic solvent-tolerant lipase-producing strain YB103 was isolated from soil samples and identified taxonomically as Xanthomonas oryzae pv. oryzae. The lipase from X. oryzae pv. oryzae YB103 (LipXO) was purified 101.1-fold to homogeneity with a specific activity of 373.9 U/mg. The purified lipase showed excellent thermostability, exhibiting 51.1 % of its residual activity after incubation for 3 days at 70 °C. The enzyme showed optimal activity at 70 °C, suggesting it is a thermostable lipase. LipXO retained 75.1–154.1 % of its original activity after incubation in 20 % (v/v) hydrophobic organic solvents at 70 °C for 24 h. Furthermore, LipXO displayed excellent stereoselectivity (e.e.p >99 %) toward (S)-1-phenethyl alcohol in n-hexane. These unique properties of LipXO make it promising as a biocatalyst for industrial processes.  相似文献   

12.
The total fraction of aminoacyl-tRNA synthases from Escherichia coli has been shown to catalyze the synthesis of the bis(5′-nucleosidyl) oligophosphates Ap4AZT, Ap4d4T, Ap43TC, and Ap4ACV, as well as Ap3AZT and Ap3d4T, from [α-32P]ATP and the corresponding nucleoside-5′-tri(or di)phosphate. The resulting compounds, characterized by HPLC, are resistant to alkaline phosphatase. Ap4AZT, Ap4d4T, and Ap43TC are formed with approximately equal efficiency, whereas the efficiencies of the synthesis of Ap4ACV, Ap3AZT, and Ap3d4T are three- to fivefold lower.  相似文献   

13.
The COMPASS tokamak (R = 0.56 m, a = 0.2 m, BT = 1.3 T, Ip ~ 300 kA, pulse duration 0.4 s) operates in ITER-like plasma shape in H-mode with Type-I ELMs. In 2019, we plan to install into the divertor a test target based on capillary porous system filled with liquid lithium/tin. This single target will be inclined toroidally in order to be exposed to ITER-relevant surface heat flux (20 MW/m2). Based on precisely measured actual heat fluxes, our simulations predict (for 45° inclination, without accounting for the lithium vapor shielding) the surface temperature rises up to 700°C within 120 ms of the standard ELMy H-mode heat flux with ELM filaments reaching hundreds MW/m2. Significant lithium vaporization is expected. The target surface will be observed by spectroscopy, fast visible and infrared cameras. The scientific program will be focused on operational issues (redeposition of the evaporated metal, ejection of droplets, if any) as well as on the effect on the plasma physics (improvement of plasma confinement, L–H power threshold, Zeff, etc.). After 2024, a closed liquid divertor may be installed into the planned COMPASS Upgrade tokamak (R = 0.84 m, a = 0.3 m, BT = 5 T, Ip = 2 MA, Pin = 8 MW, pulse duration ~2 s) with ITER-relevant heat fluxes loading the entire toroidal divertor.  相似文献   

14.
In this study, frequencies of the polymorphic variants of the genes encoding antioxidant enzymes, GSTM1, GSTT1, GSTP1, CAT, GPX1, NQO1, SOD1, and SOD3 were examined in three ethnic groups of healthy subjects from the Republic of Bashkortostan (Russians, Tatars, and Bashkirs). An association of these markers with the development of chronic obstructive pulmonary disease (COPD) was tested. Interethnic differences relative to the distribution of the polymorphic variants of the GSTP1 locus Ile105Val and the NQO1 locus 609C/T were revealed. Relative to the genotype distribution at the Ile105Val locus of the GSTP1 gene, ethnic group of Bashkirs was found to be statistically significantly different from Tatars (χ2 = 8.819; d.f. = 2; P = 0.012). Relative to the genotype frequency distribution pattern at the NQO1 locus 609C/T, the group of Bashkirs differed from Russians (χ2 = 8.913; d.f. = 2; P = 0.012). An association of genotype Val/Val of the GSTP1 Ile105Val locus with the risk of COPD in Russians (χ2 = 5.25; P = 0.022; P cor = 0.044; OR = 4.09), and of the GSTP1 haplotype *D in Tatars, was demonstrated (χ2 = 11.575; P = 0.0014; P cor = 0.0042; OR = 3.178). Genotype TT of the CAT ?262C/T locus marked resistance to the COPD development in Russians (χ2 = 6.82; P = 0.0098; P cor = 0.0196; OR = 0.31; 95%CI, 0.119 to 0.77). The risk for COPD in the ethnic group of Tatars was associated with the CAT haplotype (?262)C/(1167)T (χ2 = 6.038; P = 0.0147; P cor = 0.044; OR = 1.71). Analysis of the NQO1 haplotypes at the 465C/T and 609C/T loci showed that haplotype 465C/609T was associated with COPD in Russians (χ2 = 4.571; P = 0.0328; P cor = 0.01; OR = 1.799). It was demonstrated that Gly allele of the Arg213Gly polymorphic locus of the SOD3 gene marked the risk for COPD in the ethnic group of Tatars (OR = 2.23; 95%CI, 1.22 to 4.1). Thus, GSTP1, CAT, NQO1, and SOD3 polymorphisms play an important role in the development of COPD among the population of Bashkortostan.  相似文献   

15.
Heat stress is one of the main abiotic stresses that limit plant growth. The effects of high temperature on oxidative damage, PSII activity and D1 protein turnover were studied in three wheat varieties with different heat susceptibility (CS, YN949 and AK58). The results showed that heat stress induced lower lipid peroxidation in AK58 and YN949 than CS, which was related to different changes of SOD, CAT, POD and H2O2. Similarly, AK58 and YN949 performed better PSII photochemical efficiency (Fv/Fm, ΦPSII and ETR) under high temperature, which was attributed to rapid synthesis and degradation of D1 protein. Moreover, higher expression of D1 protein turnover-related genes (PsbA, STN8, PBCP, Deg1, Deg2, Deg5, Deg8, FtsH1/5 and FtsH2/8) and SOD activity in AK58 and YN949 under normal conditions also established a basis for acclimatizing high temperatures, thereby alleviating PSII photoinhibition and reducing oxidative damage when exposed to heat stress.  相似文献   

16.
A Pichia pastoris cell-surface display system was constructed using the Sed1 anchor system that has been developed in Saccharomyces cerevisiae. Candida antarctica lipase B (CALB) was used as the model protein and was fused to an anchor that consisted of 338 amino acids of Sed1. The resulting fusion protein CALBSed1 was expressed under the control of the alcohol oxidase 1 promoter (pAOX1). Immunofluorescence microscopy of immunolabeled Pichia pastoris revealed that CALB was displayed on the cell surface. Western blot analysis showed that the fusion protein CALBSed1 was attached covalently to the cell wall and was highly glycosylated. The hydrolytic activity of the displayed CALB was more than 220 U/g dry cells after 120 h of culture. The displayed protein also exhibited a higher degree of thermostability than free CALB.  相似文献   

17.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

18.
The α-amylase (Ba-amy) of Bacillus acidicola was fused with DNA fragments encoding partial N- and C-terminal region of thermostable α-amylase gene of Geobacillus thermoleovorans (Gt-amy). The chimeric enzyme (Ba-Gt-amy) expressed in Escherichia coli displays marked increase in catalytic efficiency [K cat: 4 × 104 s?1 and K cat/K m: 5 × 104 mL?1 mg?1 s?1] and higher thermostability than Ba-amy. The melting temperature (T m) of Ba-Gt-amy (73.8 °C) is also higher than Ba-amy (62 °C), and the CD spectrum analysis revealed the stability of the former, despite minor alteration in secondary structure. Langmuir–Hinshelwood kinetic analysis suggests that the adsorption of Ba-Gt-amy onto raw starch is more favourable than Ba-amy. Ba-Gt-amy is thus a suitable biocatalyst for raw starch saccharification at sub-gelatinization temperatures because of its acid stability, thermostability and Ca2+ independence, and better than the other known bacterial acidic α-amylases.  相似文献   

19.
Bifunctional cellulase (glycoside hydrolase 5, GH5) from Bacillus sp. D04 having both endo- and exoglucanase activities was fused with two types of carbohydrate binding modules (CBMs). CBM3 from Bacillus sp. D04 and CBM9 from Thermotoga maritima Xyn10A were added to GH5 to hydrolyze microcrystalline cellulose (Avicel) as well as water-soluble cellulose (carboxymethyl cellulose, CMC). The optimum temperature of GH5 was 50oC, while it increased to 60oC for the fusion GH5-CBM3 and GH5-CBM9, indicating that addition of CBM increased the thermostability of the enzyme. Addition of CBM3 and CBM9 enhanced the GH5 affinity (KM), for which KM decreased from 104 to 33.9 ~ 35.1 mg/mL for CMC, and from 115 to 55.5 ~ 80.3 mg/mL for Avicel, respectively. The catalytic efficiency (kcat/KM) also increased from 4.80 to 5.36 ~ 6.46 (mL/mg)/sec for CMC, and from 1.77 to 2.40 ~ 4.45 (mL/mg)/sec for Avicel, respectively, by addition of CBM3 and CBM9.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号