首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aldehyde inhibitory compounds derived from lignocellulosic biomass pretreatment have been identified as a major class of toxic chemicals that interfere with microbial growth and subsequent fermentation for advanced biofuel production. Development of robust next-generation biocatalyst is a key for a low-cost biofuel production industry. Scheffersomyces (Pichia) stipitis is a naturally occurring C-5 sugar utilization yeast; however, little is known about the genetic background underlying its potential tolerance to biomass conversion inhibitors. We investigated and identified five uncharacterized putative aryl-alcohol dehydrogenase genes (SsAADs) from this yeast as a new source of resistance against biomass fermentation inhibitor 2-furaldehyde (furfural) by gene expression, gene cloning, and direct enzyme assay analysis using partially purified proteins. All five proteins from S. stipitis showed furfural reduction using cofactor NADH. An optimum active temperature was observed at 40 °C for SsAad1p; 30 °C for SsAad3p, SsAad4p, and SsAad5p; and 20 °C for SsAad2p. SsAad2p, SsAad3p, and SsAad4p showed tolerance to a wide range of pH from 4.5 to 8, but SsAad1p and SsAad5p were sensitive to pH changes beyond 7. Genes SsAAD2, SsAAD3, and SsAAD4 displayed significantly enhanced higher levels of expression in response to the challenge of furfural. Their encoding proteins also showed higher levels of specific activity toward furfural and were suggested as core functional enzymes contributing aldehyde resistance in S. stipitis.  相似文献   

2.
Interactions among the unattached red alga Gracilaria gracilis, the dominant species of an algal community, and associated algal species Chaetomorpha linum, Enteromorpha prolifera f. prolifera, and Polysiphonia sp. were studied during and after an algal bloom. It was shown that during their bloom the associated algae Enteromorpha and Polysiphonia sp. significantly decreased the photosynthetic rate of G. gracilis but did not affect its growth rate. It is suggested that the inhibition of Gracilaria gracilis photosynthesis is connected to the impact of extracellular metabolites excreted by Chaetomorpha linum, Enteromorpha prolifera f. prolifera, and Polysiphonia sp. In laboratory experiments, the photosynthetic rate of the associated species was enhanced in the presence of Gracilaria. However, no significant alterations were observed in the content of chlorophyll a, growth, and the dark respiration rates of associated algae when they were kept together with Gracilaria. It was suggested that allelopathic interactions observed among algal species during the formation of the monospecific Gracilaria community, as well as during algal blooms, are not determinative.  相似文献   

3.

Objective

To explore the combined effects of temperature and Daphnia-associated infochemicals on colony formation of Scenedesmus obliquus to faciliate harvesting the algal biomass.

Results

A three-parameter modified Gaussian model fitted the changes of the number of cells per particle in S. obliquus induced by Daphnia culture filtrate well under any temperature. Decreases in temperature enhanced the induced–colony formation of Scenedesmus. The maximum colony size at 15–25 °C was significantly larger than those at 30–35 °C. An additional 1 or 2 days at low temperature was needed to reach the maximum colony size, which indicates the best harvest time for algal biomass.

Conclusion

Induced-colony formation of Scenedesmus by Daphnia culture filtrate at 15–25 °C is recommended to settle algal cells. This condition facilitates harvesting the biomass.
  相似文献   

4.
A novel (R)-1-phenylethanol dehydrogenase was successfully purified from Lysinibacillus sp. NUST506 by preparative polyacrylamide gel electrophoresis. The enzyme is a NAD+-dependent oxidoreductase. The molecular weight of the (R)-1-phenylethanol dehydrogenase measured by SDS-PAGE was about 28 kDa. Furthermore, the optimal reaction conditions for the oxidative reaction were 70°C and pH 9.5 and for the reductive reaction were 65°C and pH 6.5. Under the optimal conditions, the KM and kcat values with (R)-1-phenylethanol as a substrate were found to be 0.78 mM and 123 s–1 and with acetophenone they were 0.56 mM and 125 s–1, respectively. The (R)-1-phenylethanol dehydrogenase became more stable at pH 9.5 in comparison with pH 5.0 and high stability was noticed at 4 and 37°C. Properties of the enzyme place it as a promising candidate for industrial applications.  相似文献   

5.
In recent times, the treatment of harmful algal blooms (HABs) became an important environmental issue to preserve and remediate water resources globally. In the present study, the adsorptive removal of harmful algal species Microcystis aeruginosa directly from an aqueous medium was attempted. Waste biomass (Escherichia coli) was immobilized using polysulfone and coated using the cationic polymer polyethylenimine (PEI) to generate PEI-coated polysulfone-biomass composite fiber (PEI-PSBF). The density of M. aeruginosa in an aqueous medium (BG11) was significantly decreased by treatment with PEI-PSBF. additionally, analysis using FE-SEM, confirmed that the removal of M. aeruginosa algal cells by PEI-PSBF was caused by the adsorption mechanism. According to the profiles of phosphorus for the algal cell growth in M. aeruginosa cultivating samples, we found that the adsorbed M. aeruginosa onto the PEI-PSBF lost their biological activity compared to the non-treated M. aeruginosa cells.  相似文献   

6.
The present study focused on cost-effective production of microalgal biomass and lipid production on dairy effluent. The novel microalga, Chlorella sp. isolated from the dairy effluent showed high growth and lipid production on the undiluted and two-fold diluted dairy effluent which were four to five times higher than those of Chlorella vulgaris (control). The high growth of Chlorella sp. was thought to be possibly due to its heterotrophic growth capacity, high turbidity, COD, nutrients and trace elements. In contrast, C. vulgaris showed poor heterotrophic and photoautotrophic growth under the highly turbid conditions of dairy effluent. Both Chlorella sp. and C. vulgaris showed similar total FAME (mg FAME/g algal cells). The fatty acid composition analysis revealed that both Chlorella sp. and C. vulgaris possessed major C18 and C20 fatty acids which will be used for biodiesel production. Overall, the novel microalga, Chlorella sp. isolated from the dairy effluent showed high potential for cost-effective algal cultivation and lipid production on dairy effluent without any modification of process.  相似文献   

7.
Lactococcus lactis subsp. lactis CRL 1584 isolated from a bullfrog hatchery produces a bacteriocin that inhibits both indigenous Citrobacter freundii (a Red-Leg Syndrome related pathogen) and Lactobacillus plantarum, and Listeria monocytogenes as well. Considering that probiotics requires high cell densities and/or bacteriocin concentrations, the effect of the temperature on L. lactis growth and bacteriocin production was evaluated to find the optimal conditions. Thus, the growth rate was maximal at 36 °C, whereas the highest biomass and bacteriocin activity was achieved between 20 and 30 °C and 20–25 °C, respectively. The bacteriocin synthesis was closely growth associated reaching the maximal values at the end of the exponential phase. Since bacteriocins co-production has been evidenced in bacterial genera, a purification of the bacteriocin/s from L. lactis culture supernatants was carried out. The active fraction was purified by cationic-exchange chromatography and then, a RP-HPLC was carried out. The purified sample was a peptide with a 3353.05 Da, a molecular mass that matches nisin Z, which turned out to be the only bacteriocin produced by L. lactis CRL 1584. Nisin Z showed bactericidal effect on C. freundii and L. monocytogenes, which increased in the presence l-lactic acid?+?H2O2. This is the first report on nisin Z production by L. lactis from a bullfrog hatchery that resulted active on a Gram-negative pathogen. This peptide has potential probiotic for raniculture and as food biopreservative for bullfrog meat.  相似文献   

8.
Conventionally, production of methyl ester fuels from microalgae occurs through an energy-intensive two-step chemical extraction and transesterification process. To improve the energy efficiency, we performed in situ enzymatic conversion of whole algae biomass from an oleaginous heterokont microalga Nannochloropsis oceanica IMET1 with the immobilized lipase from Candida antarctica. The fatty acid methyl ester yield reached 107.7% for dry Nannochloropsis biomass at biomass to t-butanol to methanol weight ratio of 1:2:0.5 and a reaction time of 12 h at 25 °C, representing the first report of efficient whole algae biomass conversion into fatty acid methyl esters at room temperature. Different forms of algal biomass including wet Nannochloropsis biomass were tested. The maximum yield of wet biomass was 81.5%. Enzyme activity remained higher than 95% after 55 days of treatment (equal to 110 cycles of reaction) under the conditions optimized for dry algae biomass conversion. The low reaction temperature, high enzyme stability, and high yield from this study indicate in situ enzymatic conversion of dry algae biomass may potentially be used as an energy-efficient method for algal methyl ester fuel production while allowing co-product recovery.  相似文献   

9.
The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.  相似文献   

10.
A magnetophoretic harvesting agent, a polypyrrole/Fe3O4 magnetic nanocomposite, is proposed as a cost and energy efficient alternative to recover biomass of the microalgae Botryococcus braunii, Chlorella protothecoides, and Chlorella vulgaris from their culture media. The maximal recovery efficiency reached almost 99 % for B. braunii, 92.4 % for C. protothecoides, and 90.8 % for C. vulgaris. The maximum adsorption capacity (Q 0) of the magnetic nanocomposite for B. braunii (63.49 mg dry biomass mg?1 PPy/Fe3O4) was higher than that for C. protothecoides (43.91 mg dry biomass mg?1 PPy/Fe3O4) and C. vulgaris (39.98 mg dry biomass mg?1 PPy/Fe3O4). The highest harvesting efficiency for all the studied microalgae were at pH 10.0, and measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that polypyrrole/Fe3O4 can be a promising flocculant due to its high efficacy, low dose requirements, short settling time, its integrity with cells, and with great potential for saving energy because of its recyclability.  相似文献   

11.
The biodegradation of furfuryl alcohol (FA) in shake flask experiments using a pure culture of Pseudomonas putida (MTCC 1194) and Pseudomonas aeruginosa (MTCC 1034) was studied at 30 °C and pH 7.0. Experiments were performed at different FA concentrations ranging from 50 to 500 mg/l. Before carrying out the biodegradation studies, the bacterial strains were acclimatized to the concentration of 500 mg/l of FA by gradually raising 100 mg/l of FA in each step. The well acclimatized culture of P. putida and P. aeruginosa degraded about 80 and 66% of 50 mg/l FA, respectively. At higher concentration of FA, the percentage of FA degradation decreased. The purpose of this study was to determine the kinetics of biodegradation of FA by measuring biomass growth rates and concentration of FA as a function of time. Substrate inhibition was calculated from experimental growth parameters using the Haldane equation. Data for P. putida were determined as µ max ?=?0.23 h?1, K s ?=?23.93 mg/l and K i ?=?217.1 mg/l and for P. aeruginosa were determined as µ max ?=?0.13 h?1, K s ?=?21.3 mg/l and K i ?=?284.9 mg/l. The experimental data were fitted in Haldane, Aiba and Edwards inhibition models.  相似文献   

12.
Snakebite is a serious occupational hazard affecting mainly rural populations of tropical and subtropical developing countries. Lachesis muta (Bushmaster) bites are extremely serious but are rarely reported in the literature. Bushmaster envenomings are characterized by intense local pain, edema, neurotoxicity, hypotension, local hemorrhage, and dramatic systemic alterations. Antivenom treatment has regularly been used for more than a century; however, it fails to neutralize local tissue damage and hemorrhage, leading to morbidity or disabilities in victims. Thus, the production and clinical use of antivenom must be improved. The present work characterizes, for the first time, a sulfated polysaccharide from the red seaweed, Laurencia aldingensis, including its neutralizing effect on some toxic activities of L. muta venom. Chemical and spectroscopic analyses showed that L. aldingensis produces sulfated agarans with the A-units partially C-2 sulfated or 6-O-methoxylated presetting the B-units in the cyclized (3,6-anhydro-α-L-galactose) or in the non-cyclized form (α-L-galactose). The latter is significantly substituted by sulfate groups on C-6. In vitro and in vivo assays showed that this sulfated agaran inhibited hemolysis, coagulation, proteolysis, edema, and hemorrhage of L. muta venom. Neutralization of hemorrhagic activity was also observed when the agaran was administered by different routes and after or before the venom injection. Furthermore, the agaran blocked the edema caused by a phospholipase A2 isolated from the L. muta venom. Experimental evidence therefore indicates that the sulfated agaran of L. aldingensis has potential to aid antivenom therapy of accidents caused by L. muta venom and may help to develop more effective antivenom treatments of snake bites in general.  相似文献   

13.
The interactive effects of shade and drought on the morphological and physiological traits of Catalpa bungei plantlets were assessed. Seedling growth, biomass, biomass allocation, leaf morphology, chlorophyll (Chl) content and gas-exchange parameters were measured in plants raised for 3 months under three light levels [80% (HI), 50% (MI), 30% (LI)] and two water levels [moisture (M) and drought (D)]. The results showed that shade greatly decreased growth, biomass, leaf area (LA) and Chl a/b; increased specific leaf area (SLA) and Chl content; and reduced photosynthetic rate (P n). Drought reduced the growth, biomass, LA, SLA, Chl a/b, P n, stomatal conductance (G s), transpiration rate (T r) and intercellular carbon dioxide concentration (C i) and increased the Chl content. Stomatal closure was an early physiological response to water stress. Light, water and their interaction significantly affected plant traits and their bivariate relationships. The phenotypic plasticity index of light (0.47) was much higher than that of water (0.21), indicating that light was the main driver of the variations observed. Under drought stress, growth, biomass, leaf and stem biomass allocation significantly decreased in the HI and MI environments, whereas no significant difference was observed in growth or biomass parameters under the LI condition. Furthermore, no significant difference was observed in P n, G s, or T r under the LI condition under water stress. Our results showed that shade did not alter the negative effects caused by drought stress in MI but did alleviate the negative effects of the LI condition. In summary, the effect of drought on C. bungei plantlets depends on the irradiance conditions.  相似文献   

14.
Agave has recently shown its potential as a bioenergy feedstock with promising features such as higher biomass productivity than leading bioenergy feedstock while at the same time being drought-resistant with low water requirements and high sugar to ethanol conversion using ionic liquid (IL) pretreatment. IL pretreatment was studied to develop the first direct side-by-side comparative recalcitrance assessment of the agro-industrial residues from five Agave species [Agave americana (AME), A. angustifolia (ANG), A. fourcroydes (FOU), A. salmiana (SAL), and A. tequilana (TEQ)] using compositional analysis, X-ray diffraction, and the lignin syringyl/guaiacyl subunit ratio (S/G) by pyrolysis molecular beam mass spectrometry (PyMBMS). Prominent calcium oxalate peaks were found only in unpretreated AME, SAL, and TEQ. The S/G ratios of all five unpretreated Agave species were between 1.27 and 1.57 while the IL-pretreated samples were from 1.39 to 1.72. The highest overall sugar production was obtained with IL-pretreated FOU with 492 mg glucose/g biomass and 157 mg xylose/g biomass at 120 °C and 3 h using 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]). An estimated theoretical ethanol yield from the studied agro-industrial residues from the five Agave species was in the range of 1060 to 5800 L ethanol/ha/year. These comparison results demonstrate the potential of the Agave spp. as a suitable biofuel feedstock which can be employed within a biorefinery scheme.  相似文献   

15.
The yeast Pichia guilliermondii is capable of riboflavin overproduction under iron deficiency. The rib80, hit1, and red6 mutants of this species, which exhibit impaired riboflavin regulation, are also distinguished by increased iron concentrations in the cells and mitochondria, morphological changes in the mitochondria, as well as decreased growth rates (except for red6) and respiratory activity. With sufficient iron supply, the rib80 and red6 mutations cause a 1.5–1.8-fold decrease in the activity of such Fe-S cluster proteins as aconitase and flavocytochrome b 2, whereas the hit1 mutation causes a six-fold decrease. Under iron deficiency, the activity of these enzymes was equally low in all of the studied strains.  相似文献   

16.
In the present study, a microcosm test was used to explore the effects of the zoobenthos on macrophyte allelopathy. Four representative zoobenthos showed low algal inhibition ranging within 0.05–0.16 in separate co-culture. When zoobenthos and tested microalgae were mixed completely, the inhibition rate was enhanced by 0.68. The inhibition potential followed the order: Corbicula fluminea > Palaemonetes sinensis > Chironomus plumosus > Limnodrilus hoffmeisteri. Furthermore, the benthic fauna significantly enhanced algal inhibition of the emergent plant Typha angustifolia and the submerged plant Potamogeton crispus by 0.43 and 0.32, respectively. Meanwhile, there was a significant difference in algal inhibition between five growth phases of macrophytes combined with zoobenthos community. In addition, a significant positive relationship occurred between the algal inhibition of allelopathic macrophytes and the mean individual biomass of the zoobenthos. Through the determination of physiological and biochemical traits of macrophytes, it was concluded that the zoobenthos would be a significant disturbance factor and induce strong stress-resistance response in macrophytes. Subsequently, the specific response will facilitate the algal inhibition of allelopathic macrophytes. Therefore, to keep a reasonable biodiversity will fully display strong function of the aquatic ecosystem and efficiently control harmful algal bloom.  相似文献   

17.
Horizontal and vertical distribution of algae in Ahnfeltia tobuchiensis beds was studied in the area of Mt. Stolovaya in Amursky Bay, Sea of Japan. Thirty-four species of macroalgae (2 species of Chlorophyta, 26 Rhodophyta, and 6 Ochrophyta) were found in the area of study. Two fields of the unattached alga Ahnfeltia were located opposite Mt. Stolovaya; they differed in area, macrophyte stock, number and biomass of attendant species, hydrochemical and light conditions. A monodominant Ahnfeltia tobuchiensis community formed in the southern field and a bidominant community of Ahnfeltia tobuchiensis + Ahnfeltiopsis flabelliformis developed in the northern field. It is suggested that the horizontal distribution of common macrophyte species in the Ahnfeltia beds at Mt. Stolovaya is conditioned by the amount of photosynthetically active radiation (PAR) reaching the surface of the algal bed. Differences in tolerance of Ahnfeltia and attendant species to shadowing and in light conditions across the alga stratum define the vertical distribution of algae within the bed. Chondrus armatus and Ptilota filicina were found mainly in the upper layer of the algal bed. A. tobuchiensis, A. flabelliformis, Chaetomorpha linum, and Coccotylus orientalis extended across the entire thickness of the bed.  相似文献   

18.
The variation of light intensity has obvious effects on leaf external morphology, internal anatomy, and physiological characteristics; it even induces changes in secondary metabolite production. The effects of different irradiance levels on biomass, gas exchange parameters, and photosynthetic pigment contents in Mahonia bodinieri (Gagnep.) Laferr. were analyzed here. Combined analyses of physiology, cytology, and HPLC were used to study the differences in leaf morphology, structure, physiological characters, and alkaloid content in response to different irradiances. The results indicated that the highest foliar biomass was observed under I 50 (50 % of full sunlight) followed by I 30 (30 % of full sunlight), the highest net photosynthetic rate, stomatal conductance, transpiration rate values were observed under I 30 followed by I 50, and lower values occurred in I 10 (10 % of full sunlight) and I 100 (full sunlight). With increased light intensity, total leaf area and the contents of chlorophyll a (Chl a), chlorophyll b (Chl b), and chlorophyll (Chl a+b) per unit leaf area were clearly reduced, whereas leaf mass per area, carotenoid content, leaf thickness, thickness of palisade and spongy parenchyma, and stomatal density were all significantly increased. Electron microscopic observation revealed that the number of grana, stroma lamellae and the number of starch grains in chloroplasts were decreased, the number of plastoglobuli was increased when irradiance levels increased. The estimated total yield of alkaloids in a single plant was higher under I 30 and I 50 than under I 10 or I 100 as a result of the higher biomass of the plants. Therefore, I 30 and I 50 were not only beneficial to increase biomass, but also suitable for the synthesis and accumulation of the major secondary metabolites (alkaloids). Our findings provide valuable data for the determination and regulation of irradiance levels during artificial cultivation of M. bodinieri.  相似文献   

19.
In Slovakia, a diversity of entomopathogenic fungi (Ascomycota, Hypocreales) associated with outbreaks of Ips typographus was studied in 81 localities and as many as 113 in vitro cultures of five entomopathogenic species were isolated from infected individuals: Beauveria bassiana (87 isolates), B. pseudobassiana (14 isolates), B. caledonica (6 isolates), Lecanicillium lecanii (4 isolates) and Isaria farinosa (2 isolates). B. pseudobassiana is recorded in natural populations of I. typographus for the first time. Biological properties of selected Beauveria isolates, including colony growth, biomass production, conidia yield and pathogenicity to I. typographus adults, were studied in a series of laboratory bioassays and much intra- and interspecific variability was detected. B. bassiana isolates produced biomass or conidia at significantly higher rate than B. pseudobassiana and B. caledonica isolates. Two B. bassiana isolates were selected as the most virulent to bark beetle adults, demonstrating a mean LC50 ranging from 0.72 to 2.05?×?106 conidia ml?1, and were qualified as promising candidates for biocontrol of I. typographus. Their virulence was significantly higher than that of the mycoinsecticides Boverol®, which was used as a reference strain in the virulence bioassays.  相似文献   

20.
Efficient methodology for simultaneous extraction of multiple bioactive compounds from microalgae still remains a major challenge. The present study provides a method for the sequential production of three major products: Chlorella Growth Factor (CGF, a nucleotide-peptide complex enriched with vitamins, minerals, and carbohydrates), lipid, and carotenoids from Chlorella vulgaris biomass in an economically feasible manner. After protein-rich CGF was extracted, the spent biomass was found to contain 12% lipid and 3% carotenoids when extracted individually, compared to that of the un-utilized (fresh) biomass (lipid, 14%; carotenoids, 4%). When extracted simultaneously using conventional methods, the yield of lipid from “CGF and carotenoids-extracted biomass,” and carotenoids from “CGF and lipid-extracted biomass” were significantly reduced (50%). However, simultaneous extraction using different solvent mixtures such as hexane:methanol:water and pentane:methanol:water mixture-augmented lipid yield by 38.5% and carotenoids by 14%, and additionally retained chlorophyll and its derivatives. Column chromatographic approach yielded sequential production of lipid (18%), lutein (9%) with better yields as well as without chlorophyll interference. Different geometric isomers of lutein all-E-(trans)-(3R,3′R,6′R)-β,ε-carotene-3,3′diol, 9Z(cis)-(3R,3′R,6′R)-β,ε-carotene-3,3′diol, and 13Z(cis)-(3R,3′R,6′R)-β,ε-carotene-3,3′diol were purified by HPLC and elucidated by CD, UV, NMR, FT-IR, and Mass spectra. In conclusion, the study provides an efficient and economically viable methodology for sequential production of lipid and lutein along with its geometrical isomers without chlorophyll influence and yield loss from the protein-rich CGF-extracted spent biomass of marine microalga, Chlorella vulgaris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号