首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simultaneous production of intracellular esterase and extracellular protease from the strain Lysinibacillus fusiformis AU01 was studied in detail. The production was performed both under batch and fed-batch modes. The maximum yield of intracellular esterase and protease was obtained under full oxygen saturation at the beginning of the fermentation. The data were fitted to the Luedeking–Piret model and it was shown that the enzyme (both esterase and protease) production was growth associated. A decrease in intracellular esterase and increase in the extracellular esterase were observed during late stationary phase. The appearance of intracellular proteins in extracellular media and decrease in viable cell count and biomass during late stationary phase confirmed that the presence of extracellular esterase is due to cell lysis. Even though the fed-batch fermentation with different feeding strategies showed improved productivity, feeding yeast extract under DO-stat fermentation conditions showed highest intracellular esterase and protease production. Under DO-stat fed-batch cultivation, maximum intracellular esterase activity of 820?×?103 U/L and extracellular protease activity of 172?×?103 U/L were obtained at the 16th?hr. Intracellular esterase and extracellular protease production were increased fivefold and fourfold, respectively, when compared to batch fermentation performed under shake flask conditions.  相似文献   

2.
Abstract

Candida rugosa is an excellent source of multiple lipase and esterase enzymes; therefore, it is of technological importance to formulate the medium that provides high activity for each enzyme. In this work, the cultivation medium comprising complex nutrients that provided the highest activity, productivity, and yield of C. rugosa enzymes individually was formulated. Time courses of the extracellular and intracellular lipase and esterase activities of C. rugosa were represented and the role of protease in the cultivation progress was discussed. Urea, soy-peptone, yeast extract, a mixture of soy-peptone and yeast extract, cheese whey, and wheat mill bran were tested for their lipolytic and esterasic activities. Urea provided considerably higher extracellular lipase activity when compared to other nitrogen sources; however, soy-peptone provided the highest extracellular esterase activity. Hazelnut, olive, sesame, soybean, and flax seed oils affected the enzyme activities to different extents related to their fatty acid compositions. Hazelnut oil and olive oil provided the highest extracellular lipase and esterase activities, respectively, whereas sesame oil produced the highest biomass. High C18 and C16 ester contents of vegetable oils promoted high lipase and esterase productions, respectively. A temperature of 30°C yielded the highest extracellular and intracellular lipase and esterase activities; however, 35°C produced the highest biomass.  相似文献   

3.
AIMS: To analyse the extracellular protease profile of two Paenibacillus species, Paenibacillus peoriae and Paenibacillus polymyxa, as well as how different growth media influenced its expression. METHODS AND RESULTS: Both bacteria were cultured in five media [Luria-Bertani broth, glucose broth, thiamine/biotin/nitrogen broth (TBN), trypticase soy broth and a defined medium] for 48 h at 32 degrees C. Our results showed a heterogeneous protease secretion pattern whose expression was dependent on medium composition. However, TBN induced the most quantitative and qualitative protease production on both Paenibacillus. The proteases were detected in neutral-alkaline pH range, being totally inhibited by 1,10-phenanthroline, a zinc-metalloprotease inhibitor. We also analysed the protease expression during the growth and, at least to P. peoriae, the most elevated protease activity was measured at 96 h, in which the highest number of spores and a low concentration of viable cells were observed. CONCLUSIONS: The results presented add P. peoriae and P. polymyxa to the list of neutral-alkaline extracellular protease producers. SIGNIFICANCE AND IMPACT OF THE STUDY: Paenibacillus species are ubiquitous in nature, are capable to form resistant spores and to produce several hydrolytic enzymes, including proteases. However, only few data concerning the production of these enzymes are available. Proteases produced by Paenibacillus strains may represent new sources for biotechnological use.  相似文献   

4.
An extremely halophilic Chromohalobacter sp. TVSP101 was isolated from solar salterns and screened for the production of extracellular halothermophilic protease. Identification of the bacterium was done based upon biochemical tests and the 16S rRNA sequence. The partially purified enzyme displayed maximum activity at pH 8 and required 4.5 M of NaCl for optimum proteolytic activity. In addition, this enzyme was thermophilic and active in broad range of temperature 60–80°C with 80°C as optimum. The Chromohalobacter sp. required 4 M NaCl for its optimum growth and protease secretion and no growth was observed below 1 M of NaCl. The initial pH of the medium for growth and enzyme production was in the range 7.0–8.0 with optimum at pH 7.2. Various cations at 1 mM concentration in the growth medium had no significant effect in enhancing the growth and enzyme production but 0.5 M MgCl2 concentration enhanced enzyme production. Casein or skim milk powder 1% (w/v) along with 1% peptone proved to be the best nitrogen sources for maximum biomass and enzyme production. The carbon sources glucose and glycerol repressed the protease secretion. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of halophilic protease.  相似文献   

5.
Wang HT  Hsu JT 《Anaerobe》2005,11(3):155-162
In this study, Prevotella ruminicola 23 (ATCC 19189), a ruminal proteolytic bacterium, was used as protease producer to examine the optimal condition for protease production. The best carbon and nitrogen sources for the maximum growth were glucose with peptone. Both sucrose and glucose could stimulate high protease production. Casein and peptone are better nitrogen sources for protease production than other choice in this study. The best enzyme production condition was 18-20 h incubation which was at late log phase in the broth of 5% glucose or sucrose as carbon source with 0.1% ammonium chloride and 0.2% peptone as nitrogen sources. Most of the protease activity was secreted into broth (65%) and on cell surface (18%). The optimal temperature and pH for protease reaction were 40 degrees C and pH 6.8, respectively. After incubation for 6h, the crude extract maintained 50% of original protease activity at 30 and 50 degrees C, and protease activity was stable between pH 6 and 8. The protease inhibitor test showed that serine, aspartic acid and metallo-protease inhibitors could cause inhibition of proteolysis. Protein feedstuff degradation experiments suggested that protease in crude extract had higher degradation ability on fish meal, whey, and feather meal (2.39, 2.60 and 1.76 micromol aminoacid/mg enzyme/h) in comparison to soybean meal and blood meal (1.11 and 1.09 micromol aminoacid/mg enzyme/h). The protease in the crude extract should have application potential in term of improving utilization of fish meal and feather meal for monogastric animals.  相似文献   

6.
AIMS: The effect of various nitrogen sources and nutritional starvation was examined on the production of an extracellular protease secreted by the haloalkaliphilic archaeon Natrialba magadii. METHODS AND RESULTS: Cell growth and proteolytic activity were measured in cells grown with different nitrogen sources. Proteolytic activity was produced in complex and easily metabolized nitrogen sources such as yeast extract, casein and casamino acids; meanwhile, ammonium repressed enzyme production. The time course and amount of protease accumulated showed an inverse correlation with growth rate and nutrient concentration. Starvation did not induce extracellular protease production. CONCLUSION: The accumulation of Nab. magadii extracellular protease is stimulated by nutrient limitation and slow growth rate indicating that it is probably induced in response to a deficit in the energetic status of the cells. Nutritional starvation did not induce protease accumulation suggesting that de novo synthesis of this protease and/or factor/s necessary for its activation are required. This enzyme may be regulated by nitrogen catabolite repression and it does not require protein substrates for induction. SIGNIFICANCE AND IMPACT OF THE STUDY: These results contribute to the basic knowledge on protease regulation in haloalkaliphilic archaea and will help to optimize the production of this extremozyme for biotechnological applications such as protease-catalysed peptide synthesis.  相似文献   

7.
Production of extracellular protease by Candida lipolytica NRRL Y-1094 was depressed upon transfer to carbon-, nitrogen- or sulphur-free medium but not upon transfer to phosphorus-free medium. The protease activities produced under the three nutrient limitations had alkaline pH optima and similar substrate and inhibitor specificities. Any one of the following three conditions wass found to be sufficient for depression of extracellular protease: (1) “poor” carbon source, (b) cysteine intracellular pool below 0.5 μmol/g dry weight cells and (c) ammonia intracellular pool below 10 μmol/g dry weight cells. Thus, extracellular protease production in C. lipolyutica was subject to at least three different regulatory controls, carbon, sulphur and nitrogen repression. Intracellular cysteine and ammonia appeared to be the metabolic signals for sulphur and nitrogen repression, respectively. Anabolic glutamate dehydrogenase did not act as a regulatory protein mediating nitrogen repression. Exogenous protein had an inductive effect on extracellular protease production.  相似文献   

8.
An alkalophilic bacterial isolate identified as Bacillus pantotheneticus, isolated from saline-alkali soils of Avadh region of UP, India, was studied for the production of alkaline protease. The mutant of the isolated species showed 44% improved production over the parent strain. Organic nitrogen sources supported better protease production than the inorganic sources. The production of alkaline protease was (242 U/ml) in the medium containing molasses, which was comparable with molasses and wheat bran (285 U/ml) as carbon and nitrogen sources, respectively. Protease production was best at pH 10 and temperature 30 degrees C. The Km (for casein) was 11 mg/ml and Vmax was 380-microg tyrosine/ml/min. The enzyme was stable between pH 7 and 10.7 and temperature between 30 and 60 degrees C with a pH and temperature optimum at 8.4 and 40 degrees C, respectively. The results indicated that molasses was an optimal substrate for alkaline protease production.  相似文献   

9.
Alkaline protease production under solid-state fermentation was investigated using isolated alkalophilic Bacillus sp. Among all agro-industrial waste material evaluated, green gram husk supported maximum protease production. Solid material particle size regulated the enzyme production and yield was improved with the supplementation of carbon and nitrogen sources to the solid medium. Optimum enzyme production was achieved with 1.5% maltose and 2.0% yeast extract with 371% increase than control. Glucose did not repressed enzyme production but inorganic nitrogen sources showed little negative impact. The physiological fermentation factors such as pH of the medium (pH 9.0), moisture content (140%), incubation time (60 h) and inoculum level played a vital role in alkaline protease production. The enzyme production was found to be associated with the growth of the bacterial culture.  相似文献   

10.
AIMS: Isolation and screening of extreme halophilic archaeon producing extracellular haloalkaliphilic protease and optimization of culture conditions for its maximum production. METHODS AND RESULTS: Halogeometricum sp. TSS101 was isolated from salt samples and screened for the secretion of protease on gelatin and casein plates containing 20% NaCl. The archaeon was grown aerobically in a 250 ml flask containing 50 ml of (w/v) NaCl 20%; MgCl(2) 1%; KCl 0.5%; trisodium citrate 0.3%; and peptone 1%; pH 7.2 at 40 degrees C on rotary shaker. The production of enzyme was investigated at various pH, temperatures, NaCl concentrations, metal ions and different carbon and nitrogen sources. The partially purified protease had activity in a broad pH range (7.0-10.0) with optimum activity at pH 10.0 and a temperature (60 degrees C). The enzyme was thermostable and retained 70% initial activity at 80 degrees C. Maximum protease production occurred at 40 degrees C in a medium containing 20% NaCl (w/v) and 1% skim milk powder after 84 h in shaking culture. Enzyme secretion was observed at a broad pH range of 7.0-10.0. Addition of CaCl(2) (200 mmol) to the culture medium enhanced the production of protease. Protein rich flours proved to be cheap and good alternative source for enzyme production. Different osmolytes were tested for the growth and production of haloalkaliphilc protease and found that betaine and glycerol enhanced growth without secretion of the protease. Immobilization studies showed that whole cells immobilized in 2% alginate beads were stable up to 10 batches and able to secrete the protease, which attained maximum production within 60 h under shaking conditions. CONCLUSIONS: Halogeometricum sp. TSS101 secreted an extracellular haloalkaliphilic and thermostable protease. The optimum conditions required for maximum production are 20% NaCl, 1% skim milk powder and temperature at 40 degrees C. Addition of CaCl(2) (200 mmol) enhanced the enzyme production. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of haloalkaliphilic protease. SIGNIFICANCE AND IMPACT OF THE STudy: The low cost protein rich flours were used as an alternative carbon and nitrogen sources for enzyme production. Immobilization of halophilic cells in alginate beads can be used in continuous production of halophilic enzyme. The halophilic and thermostable protease from Halogeometricum sp. TSS101 is good source for industrial applications and can be a suitable source for preparation of fish sauce.  相似文献   

11.
The growth and the production of extracellular and intracellular lipases were measured fromNocardia asteroides grown under different cultural conditions. Maximal growth and intracellular and extracellular activities were observed at 3 d after inoculation. Among the tested media, synthetic medium induced maximal growth and extracellular activity, whereas tryptic soy broth induced the maximal intracellular lipase activity. The best carbon and nitrogen sources for growth and lipolytic activity were glucose, fructose, glutamate and nitrate, respectively. The optimal C∶N ratio for growth was in the range of 1∶4 to 2∶3 and for lipase activity the range was 2∶3 to 3∶2. Anything above or below this range was detrimental to the organism and its enzyme activity. Under the conditions of this study,N. asteroides grew best and had the highest lipase activity when compared toN. brasiliensis andN. caviae.  相似文献   

12.
Aspergillus niger F2078 produces high levels of extracellular thermostable acid protease within 96 h. Although glucose and peptone were the best carbon and nitrogen sources, respectively, sucrose and a cheap nitrogen source, corn steep liquor, also gave satisfactory enzyme yields. Supplementation of groundnut meal to the basal medium enhanced enzyme production. Temperature and pH optima of the enzyme activity were 60°C and 3.0–4.0, respectively. The enzyme was stable between pH 3.0 and 6.0 and at temperatures up to 60°C.  相似文献   

13.
Growth and esterase production (activity on p-nitrophenyl caprylate) by the newly isolated Bacillus circulans MAS2 bacterial strain were studied. The growth rate at 50°C was high (0.9 h-1) on LB medium with glucose added. Esterase production followed growth with the majority of activity being intracellular during exponential growth phase. During stationary phase, the esterase activity was released in the culture medium. The strain was able to grow at 35– 55°C with maximum growth rate at 50°C, showing a pattern typical of a moderate thermophile. Growth occurred at pH 6–9 with a maximum at 8, with a similar pattern for the esterase production. Addition of glucose, fructose, sucrose or sodium acetate greatly promoted both growth and esterase production while starch, inulin, tributyrin or glycerol showed no effect. Complex nitrogen sources such as tryptone or yeast extract increased growth and esterase production while mineral sources (ammonium chloride or sulfate), glycine or glutamate showed no effect. An increase of tryptone plus yeast extract and glucose concentrations stimulated growth and esterase production which reached 160 U L−1. Received 17 March 1999/ Accepted in revised form 25 June 1999  相似文献   

14.
Summary While Aspergillus strains are also being considered as potential hosts for production of extracellular heterologous proteins, the proteases produced by the host are highly problematic in that they typically modify and degrade the recombinant proteins. Culture-based approaches for minimization of protease activity in culture supernatants of Aspergillus niger NRRL-3 included reduction or elimination of peptide nitrogen in the medium, preferential use of a defined salts medium rather than a non-peptide nitrogen medium containing yeast-nitrogen base, supplementation of the medium with carboxymethylcellulose and cultivation at pH 6.5 rather than 7.5. In general, increased proteolytic activity was observed after maximum biomass was observed and biomass was declining suggesting the majority of protease activity was released by cell lysis. Carboxymethylcellulose shifted mycelial morphology from pelleted to filamentous. Mycelium lysis in the centre of pellets, with resultant release of intracellular proteases, would explain why filamentous cultures exhibited much lower proteolytic activity than pelleted cultures.  相似文献   

15.
The synthesis and secretion of extracellular protease was demonstrated during the incubation of dense susponsions of the asporogenicBacillus megaterium KM. The overall production of the enzyme by cells incubated with glucose in a nitrogen-free medium was found to be only slightly lower than that in the presence of an inorganic nitrogen source. The capacity to form protease decreased exponentially with increasing density of the bacterial suspension. The synthesis of the enzyme was interrupted after the exhaustion of glucose. A repeated exchange of the medium made it possible to reach relatively high and continuous production of protease for several hours. The total amount of extracellular proteins synthesized during incubation of the dense suspension in media with or without a nitrogen source was less than 2% of a total of newly formed proteins. The amount of these extracellular proteins was slightly lower in the absence of Ca2+ being considerably decreased when the dense suspension was incubated with chloramphenicol.  相似文献   

16.
Marine endosymbiontic Roseobacter sp. (MMD040), which produced high yields of protease, was isolated from marine sponge Fasciospongia cavernosa, collected from the peninsular coast of India. Maximum production of enzyme was obtained in Luria-Bertani broth. Catabolite repression was observed when the medium was supplemented with readily available carbon sources. The optimum temperature and pH for the enzyme production was 37 degrees C and 7.0, respectively. The enzyme exhibited maximum activity in pH range of 6-9 with an optimum pH of 8.0 and retained nearly 92.5% activity at pH 9.0. The enzyme was stable at 40 degrees C and showed 89% activity at 50 degrees C. Based on the present findings, the enzyme was characterized as thermotolerant alkaline protease, which can be developed for industrial applications.  相似文献   

17.
The effect of various physico-chemical factors on production of intra- and extracellular phospholipase A1 bySalmonella newport was investigated. Maximum intracellular enzyme levels were observed when cells were grown in brain heart infusion broth, after 12 h of incubation at 37°C. Highest level of extracellular phospholipase A1, however, was seen in synthetic medium (pH 7.0) after 24 h of incubation at 37°C. Agitation during incubation had no effect on the intracellular enzyme synthesis but enhanced extracellular enzyme levels. Addition of surfactants to the growth media significantly decreased both intra- and extracellular phospholipase A1 production.  相似文献   

18.
Production of extracellular proteolytic activity by Aeromonas hydrophila was influenced by temperature, pH, and aeration. Conditions which produced maximal growth also resulted in maximal protease production. Enzyme production appeared to be modulated by an inducer catabolite repression system whereby NH4+ and glucose repressed enzyme production and complex nitrogen and nonglucose, carbon energy sources promoted it. Under nutritional stress, protease production was high, despite poor growth.  相似文献   

19.
Production of extracellular proteolytic activity by Aeromonas hydrophila was influenced by temperature, pH, and aeration. Conditions which produced maximal growth also resulted in maximal protease production. Enzyme production appeared to be modulated by an inducer catabolite repression system whereby NH4+ and glucose repressed enzyme production and complex nitrogen and nonglucose, carbon energy sources promoted it. Under nutritional stress, protease production was high, despite poor growth.  相似文献   

20.
盾壳霉产生几丁质酶的条件研究   总被引:1,自引:0,他引:1  
本实验采用摇瓶培养研究了盾壳霉(Coniothyrium minitans)产生几丁质酶的条件。改良的天然马铃薯葡萄糖培养基(mPDB)较合成培养基(SMCS)更适宜作为盾壳霉产生几丁质酶的基础培养基。添加9种不同碳源试验表明葡萄糖较适宜于盾壳霉产几丁质酶;氮源试验表明硝酸钾是产酶的较适宜氮源。盾壳霉形成几丁质酶的培养时间以15 d为佳,培养的适宜pH值为6.5。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号