首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations in apolipoprotein B (APOB) may reduce binding of low density lipoprotein (LDL) to the LDL receptor and cause hypercholesterolemia. We showed that heterozygotes for a new mutation in APOB have hypobetalipoproteinemia, despite a reduced binding of LDL to the LDL receptor. APOB R3480P heterozygotes were identified among 9,255 individuals from the general population and had reduced levels of apoB-containing lipoproteins. Most surprisingly, R3480P LDL bound with lower affinity to the LDL receptor than non-carrier LDL in vitro, and these results were confirmed by turnover studies of LDL in vivo. In very low density lipoprotein (VLDL) turnover studies, the amount of VLDL converted to LDL in R3480P heterozygotes was substantially reduced, suggesting that this was the explanation for the hypobetalipoproteinemia observed in these individuals. Our findings emphasized the importance of combining in vitro studies with both human in vivo and population-based studies, as in vitro studies often have focused on very limited aspects of complex mechanisms taken out of their natural context.  相似文献   

2.
3.
We previously identified a defect in the in vivo catabolism of low density lipoprotein (LDL) from hypercholesterolemic pigs carrying a mutant apolipoprotein B allele. In the present studies, we examined the in vitro metabolism of mutant LDL in cultured pig fibroblasts. A 3-fold higher concentration of mutant LDL (compared to control) was needed to displace 50% of control 125I-LDL binding. Mutant LDL had a 6-fold higher dissociation constant than control LDL. Scatchard plots of the binding data were concave upward, suggesting multiple classes of binding sites or negative cooperativity. The mutant LDL degradation rate was reduced by 40%; this decrease could be attributed to a dense LDL subspecies. Mutant and control buoyant LDL subspecies were degraded more slowly than the corresponding dense LDL subspecies. Together, these studies show that diminished LDL receptor binding can result from mutations in apolipoprotein B and from changes in the lipid composition of LDL particles.  相似文献   

4.
A method has been described for the measurement of apoB concentration and specific activity in very low density lipoprotein (VLDL) and low density lipoprotein (LDL) during metabolic studies. For measurement of specific activity, apoB was separated from other apolipoproteins and lipids by precipitation in, and subsequent washing with, isopropanol. For determination of apoB concentration, equal volumes of lipoprotein and isopropanol were mixed, and the protein content of the apoB precipitate was measured by the difference between total lipoprotein protein and the protein measured in the supernatant. Evidence that there was no apoB solubilization in isopropanol and that precipitated apoB was virtually free of soluble apolipoproteins was obtained by electrophoresis. Lipid contamination of the apoB precipitate was less than 1%. The methods were applicable to VLDL, intermediate density lipoprotein (IDL), and LDL from normolipemic patients with protein concentrations between 187 micrograms/ml and 1898 micrograms/ml. The data obtained using isopropanol were highly correlated with those using tetramethylurea, and recoveries of apoB were similar. Furthermore, the isopropanol method has been demonstrated to yield consistent data for apoB specific activities in a study of VLDL, IDL, and LDL metabolism.  相似文献   

5.
A number of restriction fragment length polymorphisms (RFLPs) of the apolipoprotein B (apoB) and apolipoprotein A-I/C-III(apoA-I/C-III) genes have been found to be associated with serum lipoprotein levels in many adult populations. In order to examine whether these genetic polymorphisms influence serum lipoprotein levels in childhood and adolescence, we determined the apoB XbaI and apoA-I/C-III SstI genotypes and serum lipoprotein concentrations in 307 healthy Finns aged 9 to 21 years. In the age groups of 9, 12, and 15 years, subjects homozygous for the X2 allele (the XbaI site present) of the apoB gene had mean serum low-density lipoprotein (LDL) cholesterol levels (3.69, 3.43, and 3.15 mmol/l, respectively) that were 12-20% higher than those in subjects homozygous for the absence of this allele (3.08, 3.02, and 2.80 mmol/l, respectively). This association was more significant in males than in females. At the age of 9 to 18 years, subjects carrying the S2 allele (SstI site present) of the apoA-I/C-III gene complex had an approximately 6-15% higher mean serum LDL-cholesterol level than those homozygous for its absence. The combined genotype X2+S2+ (the simultaneous presence of the X2 allele and the S2 allele) was associated with an even more marked elevation of serum LDL-cholesterol level than either allele alone. As an example, the serum LDL cholesterol concentration was 20% higher in 9-year-old subjects with at least one X2 and one S2 allele than in those without either allele (3.55 vs. 2.97 mmol/l, P less than 0.005). The S2 allele was found to be significantly more frequent in eastern than in western Finland, whereas no significant areal differences were seen in the occurrence of the X2 allele. In conclusion, genetic variations of the apoB and apoA-I/C-III gene loci influence serum lipoprotein concentrations already in childhood.  相似文献   

6.
To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic modulation of plasma HDL particles, increased cholesterol efflux from foam cells, and an antioxidative effect of apoM-containing HDL.  相似文献   

7.
Apolipoprotein B (apoB) was mapped using electron microscopy to visualize pairs of monoclonal antibodies binding to the low density lipoprotein (LDL) surface. The sites at which these monoclonals bind the apoB polypeptide sequence had already been established. The angular distances between all possible pairs of binding sites except one allowed the relative placement of six epitopes on the LDL sphere. We conclude that apoB extends over at least a hemisphere of the LDL surface since four epitopes are located in the Northern Hemisphere at sites arbitrarily designated as the North Pole, the Aleutian Islands, Bogotá, and in the Atlantic Ocean, while two are found in the Southern Hemisphere at Buenos Aires and at Madagascar. ApoB appears to possess a restricted flexibility, since these relative epitope locations show a substantial standard deviation in latitude and longitude. Mapping of additional epitopes may provide an answer to the question of whether apoB circumnavigates the LDL sphere.  相似文献   

8.
Single nucleotide polymorphisms (SNPs) between microarray probes and RNA targets can affect the performance of expression array by weakening the hybridization. In this paper, we examined the effect of the SNPs on Affymetrix GeneChip probe set summaries and the expression quantitative trait loci (eQTL) mapping results in two eQTL datasets, one from mouse and one from human. We showed that removing SNP-containing probes significantly changed the probe set summaries and the more SNP-containing probes we removed the greater the change. Comparison of the eQTL mapping results between with and without SNP-containing probes showed that less than 70% of the significant eQTL peaks were concordant regardless of the significance threshold. These results indicate that SNPs do affect both probe set summaries and eQTLs (both cis and trans), thus SNP-containing probes should be filtered out to improve the performance of eQTL mapping.  相似文献   

9.
The binding of low density lipoprotein (LDL) to fibroblasts occurs through apolipoprotein B, a glycoprotein. The role of the carbohydrate in binding was assessed in two ways:
  • 1.(1) LDL, freed of sialic acid and most of the glucosamine and hexoses by digestion with a mixture of glycosidases, bound to fibroblasts as does native LDL.
  • 2.(2) The glycopeptides liberated from apoprotein B by trypsin and pronase failed to inhibit LDL binding to fibroblasts. Apparently the carbohydrate moiety of LDL does not interact with the plasma membrane receptor.
  相似文献   

10.
To investigate the effect of low density lipoprotein (LDL) heterogeneity on the conformation of LDL apolipoprotein B (apo-B), the immunoreactivities of 6 monoclonal antibodies against LDL apo-B were measured in 3 LDL subfractions isolated by equilibrium density gradient ultracentrifugation. To ensure a broad range of LDL particles, the LDL subfractions were prepared from normal subjects and patients with hyperapobetalipoproteinemia. With 3 of the antibodies, 1D1, 5E11, and 3A10, LDL fractions 1 (the most buoyant), 2 (the intermediate), and 3 (the densest) were equally immunoreactive and competed similarly with reference whole LDL. In contrast, with 3 other antibodies, 2D8, 3F5, and 4G3, fraction 1 was significantly more reactive than fraction 3; that is for each in turn, 290, 250, and 150% more of the densest LDL protein was required to achieve the same displacement as with fraction 1. Further, the immunoreactivities of the 3 LDL fractions with antibodies 2D8, 3F5, and 4G3 were negatively correlated with their LDL cholesterol to LDL protein ratio with r values of 0.727, 0.898, and 0.870, respectively, suggesting that as LDL particle size decreases, the conformation of the LDL apo-B changes progressively. It is of interest that the antigenic determinants recognized by 3F5 and 4G3 are close to the LDL receptor recognition site on LDL apo-B. Therefore, it is possible that the reduced immunoreactivity of these determinants in dense LDL may be the in vitro correlate of the reduced fractional catabolics rate of dense LDL compared to buoyant LDL previously observed in vivo.  相似文献   

11.
Factors affecting the association of apolipoprotein E (apoE) with human plasma very low density lipoprotein (VLDL) were investigated in experiments in which the lipid content of the lipoprotein was modified either by lipid transfer in the absence of lipolysis or through the action of lipoprotein lipase. In both cases, lipoprotein particles initially containing no apoE (VLDL-E), isolated by heparin affinity chromatography, were modified until they had the same lipid composition as native apoE-containing VLDL (VLDL+E) from the same plasma. Transfer-modified lipoproteins, unlike native VLDL+E, did not bind apoE or interact with heparin. In contrast, VLDL-E, whose lipid composition was modified to the same extent by lipase, bound apoE and bound to heparin under the same conditions as native VLDL+E. A structural protein (apolipoprotein B) epitope characteristic of VLDL+E was expressed during lipolysis prior to ApoE or heparin binding. The data suggest that the reaction of apoE with VLDL-E is a two-step reaction. The appearance of apoB is modified during lipolysis, with expression of a major heparin-binding site. The modified VLDL then becomes competent to bind apoE. The lipid composition of VLDL appears not to be a major factor in the ability of VLDL to bind apoE or to bind to heparin.  相似文献   

12.
In 1979, Steinberg and colleagues described a unique kindred with familial hypobetalipoproteinemia (Steinberg, D., Grundy, S. M., Mok, H. Y. I., Turner, J. D., Weinstein, D. B., Brown, W. V., and Albers, J. J. (1979) J. Clin. Invest. 64, 292-301). Recently, we demonstrated the existence of an abnormal species of apolipoprotein (apo-) B, apo-B37 (Mr = 203,000) in nine members of that kindred (Young, S. G., Bertics, S. J., Curtiss, L. K., and Witztum, J. L. (1987) J. Clin. Invest. 79, 1831-1841; Young, S. G., Bertics, S. J., Curtiss, L. K., Dubois, B. W., and Witztum, J. L. (1987) J. Clin. Invest. 79, 1842-1851). Apolipoprotein B37 contains only the amino-terminal portion of apo-B100. In affected individuals most of the apo-B37 is contained in the high density lipoprotein (HDL) fraction (d = 1.063-1.21 g/ml), where it is the principal apolipoprotein in a unique lipoprotein (Lp) particle, Lp-B37, which contains little, if any, apo-A-I. However, the most abundant lipoprotein in the HDL density fraction is a smaller particle, which contains apo-A-I, but no apo-B. The Lp-B37 particles were isolated from the HDL of affected individuals by immunoabsorption of apo-B37. Selected affinity antibodies specific for apo-B37 were used to prepare an anti-apo-B37-Sepharose 4B column. Lipoproteins not bound by the column (unbound HDL fraction) contained apo-A-I, but no apo-B. The Lp-B37, which was eluted from the column with 3 M KI, contained apo-B37 and trace amounts of apo-A-I, but no apo-B100. Over a 4-h period, normal human fibroblasts degraded 10-fold more 125I-low density lipoprotein (LDL) than 125I-Lp-B37. Also, whereas addition of excess unlabeled LDL markedly reduced degradation of 125I-LDL, it did not significantly reduce the degradation of 125I-Lp-B37. Unlabeled Lp-B37 did not inhibit uptake and degradation of 125I-LDL by fibroblasts. These data suggest that the amino-terminal portion of apo-B100, when expressed on a naturally occurring lipoprotein particle, does not contain a functional apo-B,E(LDL) receptor binding domain.  相似文献   

13.
Increased plasma concentration of lipoprotein(a) [Lp(a)] is an established independent risk factor for coronary artery disease (CAD), which is strongly genetically determined. This study was designed to investigate the relationship between the K-IV and (TTTTA)n apolipoprotein(a) [apo(a), protein; APOA, gene] polymorphisms, as well as the C766T low-density lipoprotein receptor-related protein (LRP) and the (CGG)n very low density lipoprotein receptor (VLDLR) polymorphisms on the one hand, and plasma Lp(a) levels in Czech subjects who underwent coronary angiography on the other hand. The lengths of the alleles of the APOA K-IV and (TTTTA)n polymorphisms were strongly inversely correlated with plasma Lp(a) levels in univariate analysis (r = -0.41, p < 10(-4) and r = -0.20, p < 0.01, respectively). Multivariate analysis revealed significant associations between the APOA polymorphisms studied and plasma Lp(a) levels in subjects expressing only one APOA K-IV allele (p < 10(-6) for K-IV and p < 0.001 for TTTTA). In subjects expressing both APOA K-IV alleles, the multivariate analysis revealed that only the APOA K-IV alleles were inversely correlated with plasma Lp(a) levels (p < 0.001). Associations between both the LRP and VLDLR gene polymorphisms and plasma Lp(a) levels were only of borderline significance (p < 0.06 and p < 0.07, respectively) and were not confirmed in multivariate analysis. In conclusion, both APOA length polymorphisms significantly influenced plasma Lp(a) concentration in the Czech population studied, and this circumstance could explain the association in this population observed earlier between APOA (TTTTA)n polymorphism and CAD (Benes et al. 2000). Only a minor role in the regulation of plasma Lp(a) levels is suggested for the C766T LRP and the (CGG)n VLDLR polymorphisms.  相似文献   

14.
NMR spectroscopy of 13C-labeled human low density lipoprotein (LDL) has been employed to characterize the lysine (Lys) residues in apo B-100. Reductive methylation with [13C]formaldehyde converts up to two-thirds of the Lys to the dimethylamino derivative; this pool of Lys is exposed at the surface of the LDL particle. The [13C]dimethyl-Lys which are visualized exhibit resonances at chemical shifts of 42.8 and 43.2 ppm (pH 7.6) indicating that they exist in two different microenvironments; this is a reflection of the native conformation of apo B associated with lipid, because the labeled, reduced, and alkylated protein gives a single resonance when dissolved in 7 M guanidine hydrochloride. The pH dependences of the Lys chemical shifts indicate that the two types of Lys titrate with different pK values; "active" Lys have a pK of 8.9, while "normal" Lys have a pK of 10.5. About 53 active Lys and 172 normal Lys are exposed on the surface of LDL with the remaining 132 Lys which are present in the human apo B-100 molecule being buried and unavailable for methylation. Addition of paramagnetic ions indicates that the active and normal Lys have different exposures to the aqueous phase; apparently this is a reflection of folding of the apo B molecule. The relative involvement of active and normal Lys in binding of apo B-100 to the LDL receptor on fibroblasts was explored by measuring the decrease in receptor binding as a function of the degree of methylation of the two types of Lys. Upper limits of 21 active and 31 normal Lys in the entire apo B-100 molecule are involved in the binding of LDL to the receptor. It is likely that these Lys are located in domains of apo B which contain clusters of basic amino acid residues and also bind heparin. If the sequence corresponding to apo B-48 (residues 1-2151) which does not bind to the receptor is excluded, then the above limits are halved; an upper limit of 10 active Lys may be particularly involved in receptor binding.  相似文献   

15.
The binding of low density lipoprotein (LDL) to fibroblasts occurs through apolipoprotein B, a glycoprotein. The role of the carbohydrate in binding was assessed in two ways: (1) LDL, freed of sialic acid and most of the glucosamine and hexoses by digestion with a mixture of glycosidases, bound to fibroblasts as does native LDL. (2) The glycopeptides liberated from apoprotein B by trypsin and pronase failed to inhibit LDL binding to fibroblasts. Apparently the carbohydrate moiety of LDL does not interact with the plasma membrane receptor.  相似文献   

16.
17.
The region of apolipoprotein E (apoE) that interacts directly with the low density lipoprotein (LDL) receptor lies in the vicinity of residues 136-150, where lysine and arginine residues are crucial for full binding activity. However, defective binding of carboxyl-terminal truncations of apoE3 has suggested that residues in the vicinity of 170-183 are also important. To characterize and define the role of this region in LDL receptor binding, we created either mutants of apoE in which this region was deleted or in which arginine residues within this region were sequentially changed to alanine. Deletion of residues 167-185 reduced binding activity (15% of apoE3), and elimination of arginines at positions 167, 172, 178, and 180 revealed that only position 172 affected binding activity (2% of apoE3). Substitution of lysine for Arg(172) reduced binding activity to 6%, indicating a specific requirement for arginine at this position. The higher binding activity of the Delta167-185 mutant relative to the Arg(172) mutant (15% versus 2%) is explained by the fact that arginine residues at positions 189 and 191 are shifted in the deletion mutant into positions equivalent to 170 and 172 in the intact protein. Mutation of these residues and modeling the region around these residues suggested that the influence of Arg(172) on receptor binding activity may be determined by its orientation at a lipid surface. Thus, the association of apoE with phospholipids allows Arg(172) to interact directly with the LDL receptor or with other residues in apoE to promote its receptor-active conformation.  相似文献   

18.
Low density lipoprotein (LDL) oxidation is characterized by alterations in biological properties and structure of the lipoprotein particles, including breakdown and modification of apolipoprotein B (apoB). We compared apoB breakdown patterns in different models of minimally and extensively oxidized LDL using Western blotting techniques and several monoclonal and polyclonal antibodies. It was found that copper and endothelial cell-mediated oxidation produced a relatively similar apoB banding pattern with progressive fragmentation of apoB during LDL oxidation, whereas malondialdehyde (MDA)- and hydroxynonenal (HNE) -modified LDL produced an aggregated apoB. It is conceivable that apoB fragments present in copper and endothelial cell oxidized LDL lead to the exposure on the lipoprotein surface of different protein epitopes than in aggregated MDA-LDL and HNE-LDL. Although all models of extensively oxidized LDL led to increased lipid uptake in macrophages, mild degrees of oxidation interfered with LDL uptake in fibroblasts and extensively oxidized LDL impaired degradation of native LDL in fibroblasts. We suggest that in order to improve interpretation and comparison of results, data obtained with various models of oxidized LDL should be compared to the simpliest and most reproducible models of 3 h and 18 h copper-oxidized LDL (apoB breakdown) and MDA-LDL (apoB aggregation) since different models of oxidized LDL have significant differences in apoB breakdown and aggregation patterns which may affect immunological and biological properties of oxidized LDL.  相似文献   

19.
Human apolipoprotein (apo) B-100 is composed of 4536 amino acids. It is thought that the binding of apoB to the low density lipoprotein (LDL) receptor involves an interaction between basic amino acids of the ligand and acidic residues of the receptor. Three alternative models have been proposed to describe this interaction: 1) a single region of apoB is involved in receptor binding; 2) groups of basic amino acids from throughout the apoB primary structure act in concert in apoB receptor binding; and 3) apoB contains multiple independent binding regions. We have found that monoclonal antibodies (Mabs) specific for a region that spans a thrombin cleavage site at apoB residue 3249 (T2/T3 junction) totally blocked LDL binding to the LDL receptor. Mabs specific for epitopes outside this region had either no or partial ability to block LDL binding. In order to define the region of apoB directly involved in the interaction with the LDL receptor we have tested 22 different Mabs for their ability to bind to LDL already fixed to the receptor. A Mab specific for an epitope situated between residues 2835 and 2922 could bind to its epitope on LDL fixed to its receptor whereas a second epitope between residues 2980 and 3084 is inaccessible on receptor-bound LDL. A series of epitopes near residue 3500 of apoB is totally inaccessible, and another situated between residues 4027 and 4081 is poorly accessible on receptor-bound LDL. In contrast, an epitope that is situated between residues 4154 and 4189 is fully exposed. Mabs specific for epitopes upstream and downstream of the region 3000-4000 can bind to receptor-bound LDL with a stoichiometry close to unity. Our results strongly suggest that the unique region of apoB directly involved in the LDL-receptor interaction is that of the T2/T3 junction.  相似文献   

20.
Mice deficient in receptor-associated protein (RAP) were phenotypically normal, but in contrast to results previously reported in RAP(-/-) mice, nearly 50% of the offspring died at or shortly after birth. To attempt to determine the reason for this, we analyzed the regulation of expression of genes involved in apolipoprotein E (apoE)-based mechanisms in RAP-deficient mice and compared this to results in mice deficient in low density lipoprotein receptor (LDLR) or apoE. The major finding concerned a large increase in hepatic lipoprotein receptor-related protein (LRP) mRNA and LDLR mRNA levels in pregnant RAP knockout mice. This is in contrast to the down-regulation of LRP mRNA and LDLR mRNA, which is normally seen in wild-type mice. Also in LDLR knockout mice, a significant up-regulation in expression of LRP mRNA was demonstrated. In apoE knockout mice, hepatic LRP mRNA did not change significantly, while hepatic LDLR mRNA expression was increased. In placenta and uterus, the deficiency of RAP did not markedly affect the expression of LRP and LDLR. Lipoprotein lipase mRNA and apoE mRNA increased during pregnancy in all mice, independent of their genetic status. The current study does not directly explain the increased mortality of RAP(-/-) pups. The data demonstrate, however, important relative changes in expression of the genes analyzed, an indication that LRP and LDLR play an important role in lipid metabolism during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号