首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Main principles of the way to decompose an EPR spectrum of a multicomponent system, irradiated at 77 K, into separate radiation-induced paramagnetic centre signals are given. The decomposition is possible due to the computer assistant spectra processing, and is based on different properties of different paramagnetic centres, namely, on different thermostability of the centres, on different rate of relaxation, and on different photosensitivity. Concrete examples of the EPR spectrum decomposition into different free radical signals are given for cases of murine liver and spleen irradiated at 77 K. Radiochemical yields of different free radicals, induced by gamma radiation at 77 K in whole biological tissues, were defined. The data on nature and properties of the paramagnetic centres induced by radiation in biological tissues are shortly reviewed.  相似文献   

2.
Mixed-valent species were generated in the diiron site of active (with tyrosyl free radical) and met (without radical) forms of protein R2-2 in a class Ib ribonucleotide reductase from Mycobacterium tuberculosis by low temperature reduction (γ-irradiation) at 77 K. The primary mixed-valent EPR signal is a mixture of two components with axial symmetry and gav<2.0, observable at temperatures up to 77 K, and assigned to antiferromagnetically coupled high spin ferric/ferrous sites. The two components in the primary EPR signal can be explained by the existence of two structurally distinct μ-oxo-bridged diferric centers, possibly related to structural heterogeneity around the iron site, and/or different properties of the two polypeptide chains in the homodimeric protein after the radical reconstitution reaction. Annealing of the irradiated R2-2 samples to 143 K transforms the primary EPR signal into a rhombic spectrum characterized by gav<1.8 and observable only below 25 K. This spectrum is assigned to a partially relaxed form with a μ-hydroxo-bridge. Further annealing at 228 K produces a new complex rhombic EPR spectrum composed of at least two components. An identical EPR spectrum was observed and found to be stable upon chemical reduction of Mycobacterium tuberculosis RNR R2-2 at 293 K by dithionite.  相似文献   

3.
Mixed-valent species were generated in the diiron site of active (with tyrosyl free radical) and met (without radical) forms of protein R2-2 in a class Ib ribonucleotide reductase from Mycobacterium tuberculosis by low temperature reduction (γ-irradiation) at 77 K. The primary mixed-valent EPR signal is a mixture of two components with axial symmetry and gav<2.0, observable at temperatures up to 77 K, and assigned to antiferromagnetically coupled high spin ferric/ferrous sites. The two components in the primary EPR signal can be explained by the existence of two structurally distinct μ-oxo-bridged diferric centers, possibly related to structural heterogeneity around the iron site, and/or different properties of the two polypeptide chains in the homodimeric protein after the radical reconstitution reaction. Annealing of the irradiated R2-2 samples to 143 K transforms the primary EPR signal into a rhombic spectrum characterized by gav<1.8 and observable only below 25 K. This spectrum is assigned to a partially relaxed form with a μ-hydroxo-bridge. Further annealing at 228 K produces a new complex rhombic EPR spectrum composed of at least two components. An identical EPR spectrum was observed and found to be stable upon chemical reduction of Mycobacterium tuberculosis RNR R2-2 at 293 K by dithionite.  相似文献   

4.
Evidence was obtained for the interaction between the photosystem 2 (PS2) reaction centre (RC) chlorophyll (Chl) P680 and inorganic phosphate, Pi. The light-induced endogenous basal electron transport to ferricyanide in PS2 depended on endogenous Pi. The electron transport in phosphate deficient chloroplasts was absent, and could be resumed upon the addition of exogenous Pi or of the exogenous electron donor, diphenylcarbazide. Some chloroplast Chl molecules were apparently bound with Pi to a complex via the magnesium atom that was detected by the increase in absorbance in the Chl a absorption maximum at 435 nm observed after the consumption of endogenous Pi in the photophosphorylation reactions. The electron paramagnetic resonance (EPR) Signal I, found in the spectra at 77 K after irradiation of frozen samples in chloroplasts poor in endogenous Pi, was the sum of P700+ and P680+ signals. The P680+ signal disappeared after addition of Pi, diphenylcarbazide or diuron to the chloroplasts before freezing. In addition, the EPR doublet signal of the phosphate anion radicals was recorded at 77 K after irradiation in the ethanol solutions of Chl a containing potassium phosphate. The same doublet signal was discovered in the difference EPR spectrum "chloroplasts minus chloroplasts with diuron" at 77 K after irradation. The results are a possible evidence of the participation of phosphate ions in the primary light reactions of PS2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden “spin-flip” transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, \({\dot{\text{O}}}\left( {\text{OH}} \right)_{ 2} {\text{C}}_{ 6} {\text{H}}_{ 2} {\text{COOH}}\) radicals for both compounds.  相似文献   

6.
The addition of Na and Ca chlorides to adenine (A), adenosine (Ado) and adenosine diphosphate solutions at pH 5.3 has been shown to result in intensification of EPR signals in samples irradiated by near UV at 77 K and appearance of signals of Cl 2 ?? and peroxyl radicals. The peroxyl radicals contribution can exceed 30% of total amount of paramagnetic products. The addition of inorganic phosphate reduces the contribution of peroxyl radicals. Possible mechanisms of the processes involved are discussed.  相似文献   

7.
Evidence was obtained for the interaction between the photosystem 2 (PS2) reaction centre (RC) chlorophyll (Chl) P680 and inorganic phosphate, Pi. The light-induced endogenous basal electron transport to ferricyanide in PS2 depended on endogenous Pi. The electron transport in phosphate deficient chloroplasts was absent, and could be resumed upon the addition of exogenous Pi or of the exogenous electron donor, diphenylcarbazide. Some chloroplast Chl molecules were apparently bound with Pi to a complex via the magnesium atom that was detected by the increase in absorbance in the Chl a absorption maximum at 435 nm observed after the consumption of endogenous Pi in the photophosphorylation reactions. The electron paramagnetic resonance (EPR) Signal I, found in the spectra at 77 K after irradiation of frozen samples in chloroplasts poor in endogenous Pi, was the sum of P700+ and P680+ signals. The P680+ signal disappeared after addition of Pi, diphenylcarbazide or diuron to the chloroplasts before freezing. In addition, the EPR doublet signal of the phosphate anion radicals was recorded at 77 K after irradiation in the ethanol solutions of Chl a containing potassium phosphate. The same doublet signal was discovered in the difference EPR spectrum "chloroplasts minus chloroplasts with diuron" at 77 K after irradation. The results are a possible evidence of the participation of phosphate ions in the primary light reactions of PS2.  相似文献   

8.
Absorption spectra and ESR of aqueous and aqueous/glyceric solutions of oxyhemoglobin exposed to UV radiation (250-400 nm) at 293 and 77 K in the presence of ascorbic acid have been analyzed. Vitamin C (5 x 10(-5) M) has been shown to exert a photoprotective effect with regard to oxyhemoglobin (2 x 10(-6) M) UV-irradiated with a dose of 0.86 x 10(5) J/m2 at 293 K. The photoprotective effect of ascorbic acid is also displayed after UV irradiation of frozen (77 K) aqueous/glyceric oxyhemoglobin solutions (2.53 x 10(-5) M). It is concluded that ascorbic acid can be a scavenger with respect to active UV-induced particles in protein systems, including O2-. and OH. Proposed is a mode of processes leading to UV inactivation of hemoprotein molecules.  相似文献   

9.
Pezeshk A 《Life sciences》2004,74(19):2423-2429
Electron loss from N-(2-mercaptopropionyl) glycine (PSH) gave an EPR detectable radical anion, PS-.SP(-). When the PSH derivative was frozen in aqueous DNA solutions to 77 K and exposed to ionizing radiation, normal damage to the DNA was detected by EPR spectroscopy. However, on annealing above 77 K, central EPR features for the DNA base radical cations and anions gave central features assigned to PS-.SP(-) sigma*-radical anions, together with outer features for 5-6-dihydro-5-thymyl radicals, TH.. It is proposed that on freezing, the PSH molecules are constrained into a glassy region around the DNA, and that, on annealing, electron donation gives PS. radicals, with loss of quanine radical-cations, G(.+). The PS. radicals were not detectable, but on reaction with another PSH molecule, gave good EPR spectra for PS-.SP(-) radical-anions. These results indicate that PSH had little effect on the yield of the other base radicals C(.-)/T(.-). Also, growth of TH. radicals, formed from protonated thymine radical-anions, T(.-), were detected. We conclude that the primary effect of PSH is to capture the G(.+) centers, and thus could either prevent or repair radiation damage to DNA.  相似文献   

10.
Formation of free radicals in golden hamster embryo (GHE) cells in the frozen living state by gamma irradiation has been studied by electron spin resonance spectroscopy at 4.2 and 77 K. The relative yields of H atoms, OH radicals, and organic radicals trapped in the irradiated GHE cells are 12, 72, and 16%, respectively, of total radical yields. When dimethylsulfoxide (DMSO) is added to GHE cells at 77 K, a large quantity of CH2SOCH3 radicals (DMSO radicals) are formed after gamma irradiation. The yields of OH radicals are not affected by the addition of DMSO. When the GHE cell-DMSO mixtures are irradiated with gamma rays at 77 K and then warmed to 111 K, the OH radicals decay, whereas the DMSO radicals do not increase complementarily. Moreover, the decay rates of the OH radicals at 111 K do not depend upon the concentration of DMSO. Thus OH radicals do not react with DMSO during warming of the irradiated sample. When H atoms are produced by gamma irradiation of acid ice at 60 K, the decay rates of the H atoms at 77 K increase with increasing DMSO concentration, indicating that DMSO reacts with H atoms (CH3SOCH3 + H----.CH2SOCH3 + H2) at 77 K by quantum-mechanical tunneling. When the GHE cell-DMSO mixture is irradiated with gamma rays at 77 or 4.2 K in the dark, DMSO ions are produced in addition to DMSO radicals. Therefore it is concluded that DMSO does not scavenge OH radicals, but does capture H atoms, holes and/or electrons in the gamma-irradiated cells, resulting in the remarkable formation of DMSO radicals. This scavenger effect of DMSO may be related to the radioprotection of DMSO against cell killing described in the companion paper (Watanabe et al., Radiat. Res., this issue).  相似文献   

11.
The role of inorganic phosphate as a catalyzer of the production of tyrosyl radical in frozen tyrosine solutions irradiated with near UV light at 77 K has been demonstrated by the EPR method. It was shown that the increase in the yield of tyrosyl radicals at pH < 7 correlates with the production of H atoms and can be explained by the fact that phosphate acts as an acceptor of photoejected electrons. At pH > 7, the increase in the yield of tyrosyl radicals is accompanied by the production of phosphate radicals and OH and is caused, presumably, by the catalysis of the formation of triplet states of tyrosine molecules by the HP form of phosphate, the fact shown by a number of authors. A quantitative estimation of relative concentrations of photosensitized paramagnetic products was carried out on the basis of computer analysis of resultant EPR signals.  相似文献   

12.
ESR spectra of gamma-irradiated and frozen at 77 K human oxyhemoglobin and partially denaturated methemoglobin solutions were analysed. The quartet signal ascribed to the anion-radical of proximal histidine was shown to dominate in the spectra of both solutions. The spectra of methemoglobin solution irradiated with relatively small doses have an intensive singlet ascribed to the stabilized electron. The formation mechanism of free radicals is discussed.  相似文献   

13.
Ascorbate oxidase, dissolved in Hepes or sodium phosphate buffers, was analyzed by EPR and activity measurements before and after storage at −30°C and 77 K. The specific activity was somewhat higher in the phosphate buffer, about 3500–3700 Dawson units compared to about 3100 units of the enzyme dissolved in Hepes buffer. After storage at −30°C the activity fell to 1400–2000 units in the phosphate buffer but only to 2600–2800 units in the Hepes buffer. Large changes occurred in the EPR spectrum of enzyme dissolved in the phosphate buffer after storing at −30°C suggesting an alteration of the type 2 copper site. These changes were, however, reverted when the samples were thawed and rapidly frozen at 77 K. Copper analysis showed that about 50% of the total copper was EPR detected. The type 2 Cu2+ EPR intensity was in most samples close to 25% of the total EPR intensity. This low contribution of type 2 Cu2+ could not be changed if the enzyme was completely reduced and reoxidized, treated with Fe(CN)63−, large excess of NaF, addition of 50% (v/v) ethylene glycol or dialyzed against 0.1 M Mes buffer (pH 5.5). Since the crystal structure shows that there are one each of types 1 and 2 copper in the monomers there must be another species with an EPR signal rather different from these two copper species. This signal is proposed to originate from some trinuclear centers. The EPR simulations show that it is possible to house a broad unresolved signal under the resolved type 1 and 2 signals so that the total integral becomes 50% of the total copper in the molecule.  相似文献   

14.
Cai Z  Sevilla MD 《Radiation research》2003,159(3):411-419
An investigation of electron and hole transfer to oxidized guanine bases in DNA is reported. Guanine in DNA was preferentially oxidized by Br(2)(*-) at 298 K to 8-oxo-7,8-dihydro-guanine (8-oxo-G) and higher oxidation products. HPLC-EC analysis of irradiated DNA shows that the formation of 8-oxo-G could not be increased above the ratio of one 8-oxo-G to 127 +/- 6 bp regardless of dose. 8-oxo-G can be produced only at low levels because it is further oxidized to other species. These oxidation products of guanine have been extensively investigated and identified by others. Our electron spin resonance studies suggest that at 77 K 8-oxo-G is a trap for radiation-produced holes, but certain further oxidation products of 8-oxo-G (G(ox)) are found to be efficient electron traps. Gamma irradiation of oxidized DNA samples in frozen (D(2)O) aqueous ices and glassy 7 M LiBr solutions resulted in radicals formed by electron attachment to the G(ox) sites that were monitored by electron spin resonance spectroscopy (ESR) at 77 K. These ESR spectra suggest that those oxidation products of 8-oxo-G containing alpha-diketo groups account for the electron traps (G(ox)) in oxidized DNA with oxaluric acid a likely major trap. Electron transfer from DNA anion radicals to G(ox) was followed by monitoring of their ESR signals with time at 77 K. Using typical values for the tunneling constant beta estimates of the relative amount of G(ox) to base pairs were obtained. Radicals formed by UV photolysis of oxidized DNA in 8 M NaClO(4) glassy aqueous solutions were also investigated. The 8-oxo-G cation accounts for less than 10% of all the radicals observed after either gamma irradiation of oxidized DNA in frozen (D(2)O) aqueous solution or UV photolysis of oxidized DNA in 8 M NaClO(4) glassy aqueous solutions. We estimate hole transfer distances of about 7 +/- 1 bp at 1 min from G(*+) to 8-oxo-G.  相似文献   

15.
For direct measurement of the ESR signal of superoxide anion (O2-) produced in biological samples, O2- generated at a physiological pH was trapped in alkaline media instead of by a rapid freezing method, and then its signal was measured by ESR spectroscopy at 77 K. A reaction mixture for O2- generation, such as xanthine oxidase-xanthine and neutrophils, was incubated at a physiological pH (pH 7.0-7.5) for a suitable reaction period (30s), then an aliquot (300 microliters) was pipetted out and squirted into 600 microliters of 0.5 M NaOH to stabilize O2- (pH-jump). The alkaline mixture was promptly introduced into an ESR tube and frozen by dipping the tube directly into a cooling liquid. A typical signal of O2- was detected by ESR spectroscopy and the amount of trapped O2- was measured quantitatively at 77 K. The back reaction of O2- generation from H2O2 was negligible in 0.5 M NaOH. To avoid any artificial spectrum due to autoxidation of biological samples by the pH-jump procedure, the background spectrum should be subtracted from the obtained spectrum. This pH-jump method should be widely available for direct demonstration of O2- production in biological systems at physiological pH, because an advantage of this method is the simple operation for trapping O2- without the use of any rapid-mixing apparatus as compared with the rapid freezing method.  相似文献   

16.
Stable nitroxide radicals have been considered as therapeutic antioxidants because they can scavenge more toxic radicals in biologic systems. However, as radicals they also have the potential to increase oxidant stress in cells and tissues. We studied the extent to which this occurs in cultured EA.hy926 endothelial cells exposed to the nitroxide Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl). Tempol was rapidly reduced by the cells, as manifest by an increase in the ability of the cells to reduce extracellular ferricyanide and by disappearance of the Tempol EPR signal. Cells loaded with ascorbic acid, which directly reacts with Tempol, showed increased rates of Tempol-dependent ferricyanide reduction, and a more rapid loss of the Tempol EPR signal than cells not containing ascorbate. In this process, intracellular ascorbate was oxidized, and was depleted at lower Tempol concentrations than was GSH, another important intracellular low molecular weight antioxidant. Further evidence that Tempol concentrations of 100-1000 μM induced an oxidant stress was that it caused an increase in the oxidation of dihydrofluorescein in cells and inhibited ascorbate transport at concentrations as low as 50-100 μM. The presence of intracellular ascorbate both prevented dihydrofluorescein oxidation and spared GSH from oxidation by Tempol. Such sparing was not observed when GSH was depleted by other mechanisms, indicating that it was likely due to protection against oxidant stress. These results show that whereas Tempol may scavenge other more toxic radicals, care must be taken to ensure that it does not itself induce an oxidant stress, especially with regard to depletion of ascorbic acid.  相似文献   

17.
The loss of paramagnetism of nitroxide radicals due to reductant reactions in biological systems, places a fundamental time constraint on their application as an imaging probe in in vivo EPR imaging studies. However, in vitro studies of the newly synthesized tetraethyl-substituted piperidine nitroxide radical demonstrated high resistivity to paramagnetic reduction when exposed to ascorbic acid, a common reduction agent in biological systems. In this work we investigated the use of these nitroxides as an imaging probe in EPR imaging of small rodents. 2,2,6,6-Tetraethyl-piperidine nitroxide (TEEPONE) is not highly soluble in aqueous media, thus a lipid-based emulsion system of lecithin was used to solubilize TEEPONE. The obtained solution was homogenous and with low viscosity, allowing smooth intravenous injection into mice tail vein. Acquired three dimensional (3D) EPR images of mouse head clearly showed TEEPONE distributed in all tissues including brain tissues, with an average measurable signal half-life of more than 80 min, thus demonstrating high resistivity to reduction due to ascorbic acid in in vivo animal studies, and the potential for use of this compound in in vivo studies of animal model systems.  相似文献   

18.
An electron paramagnetic resonance (EPR) study was performed for potato and wheat starch containing Cu2+ ions as a paramagnetic probe. Distribution of water in the starch granules as well as the interactions between the copper and starch matrix of different crystalline structures were determined. EPR spectra of the native starches consisted of two different centers of Cu2+. One of them, giving at 293 and 77 K an EPR signal of axial symmetry with a well-resolved hyperfine structure (HFS), was assigned to the Cu2+ -starch complex in which Cu2+ ions strongly interacted with oxygen atoms of the starch matrix. Another Cu2+ species, exhibiting an isotropic signal at 293 K and an axial signal with resolved HFS at 77 K, was attributed to a [Cu(H2O)6]2+ complex freely rotating at room temperature and immobilized at low temperatures. Interaction of Cu2+ with the starch matrix and the relative number of the particular copper species depended on the crystallographic type of starch. Dehydration at 393 K resulted in elimination of the rotating complex signal and decrease of the total intensity of the EPR spectrum caused by clustering of the Cu2+ ions. Freezing at 77 K and thawing led to restoring of the spectrum intensity and reappearing of the signal of the [Cu(H2O)6]2+ complex. This effect, related to liberation of water molecules from the granule semicrystalline growth rings on freezing/thawing, was especially visible for wheat starch, indicating differences in the water retention ability of starch granules of different crystallographic structure.  相似文献   

19.
Nugent JH  Muhiuddin IP  Evans MC 《Biochemistry》2003,42(18):5500-5507
Previous work in many laboratories has established that hydroxylamine reduces the S(1) state of the water oxidizing complex (WOC) in one-electron steps. Significant levels of what can now be defined as the S(-1)* state are achieved by specific (concentration and incubation length) hydroxylamine treatments. This state has already been studied by electron paramagnetic resonance spectrometry (EPR), and unusual EPR signals were noted (for example, see Sivaraja, M., and Dismukes, G. C. (1988) Biochemistry 27, 3467-3475). We have now reinvestigated these initial experiments and confirmed many of the original observations. We then utilized more recent EPR markers for the S(0) and S(1) states to further explore the S(-1)* state. The broad radical "split" type EPR signal, produced by 200 K illumination of samples prepared to give a high yield of the S(-1)* state, is shown to most likely reflect a trapped intermediate state between S(-1)* and S(0)*, since samples where this signal is present can be warmed in the dark to produce S(0)*. The threshold for advancement from S(-1)* to S(0)* is near 200 K, as the yield of broad radical decreases and S(0)* multiline EPR signal increases with length of 200 K illumination. Advancement of S(0)* to S(1) is limited at 200 K, but S(1) can be restored by 273 K illumination. Illumination of these hydroxylamine-treated samples at temperatures below 77 K gives a second broad radical EPR signal. The line shape, decay, and other properties of this new radical signal suggest that it may arise from an interaction in the S(-2)* or lower S states, which are probably present in low yield in these samples. Illumination below 20 K of S(0)* state samples containing methanol, and therefore exhibiting the S(0) multiline signal, gives rise to a third broad radical with distinctive line shape. The characteristics of the three broad radicals are similar to those found from interactions between Y(Z)(*) and other S states. The evidence is presented that they do represent intermediate states in S state turnover. Further work is now needed to identify these radicals.  相似文献   

20.
《Free radical research》2013,47(11-12):1325-1332
Abstract

The loss of paramagnetism of nitroxide radicals due to reductant reactions in biological systems, places a fundamental time constraint on their application as an imaging probe in in vivo EPR imaging studies. However, in vitro studies of the newly synthesized tetraethyl-substituted piperidine nitroxide radical demonstrated high resistivity to paramagnetic reduction when exposed to ascorbic acid, a common reduction agent in biological systems. In this work we investigated the use of these nitroxides as an imaging probe in EPR imaging of small rodents. 2,2,6,6-Tetraethyl-piperidine nitroxide (TEEPONE) is not highly soluble in aqueous media, thus a lipid-based emulsion system of lecithin was used to solubilize TEEPONE. The obtained solution was homogenous and with low viscosity, allowing smooth intravenous injection into mice tail vein. Acquired three dimensional (3D) EPR images of mouse head clearly showed TEEPONE distributed in all tissues including brain tissues, with an average measurable signal half-life of more than 80 min, thus demonstrating high resistivity to reduction due to ascorbic acid in in vivo animal studies, and the potential for use of this compound in in vivo studies of animal model systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号