首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amperometric glucose biosensor based on lipid film   总被引:2,自引:0,他引:2  
A novel glucose biosensor based on cast lipid film was developed. This model of biological membrane was used to supply a biological environment on the surface of the electrode, moreover it could greatly reduce the interference and effectively exclude hydrophilic electroactive material from reaching the detecting surface. TTF was selected as a mediator because of its high electron-transfer efficiency, and it was incorporated in the lipid film firmly. Glucose oxidase was immobilized in hydrogel covered on the lipid film. The effects of pH, operating potential were explored for the optimum analytical performance by using amperometric method. The response time of the biosensor was less than 20 s, and the linear range is up to 10 mmol l(-1) (corr. coeff. 0.9932) with the detection limit of 2 x 10(-5) mol l(-1). The biosensor also exihibited good stability and reproducibility.  相似文献   

2.
Nanocomposite film composed of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNT), prepared electrophoretically onto indium tin oxide (ITO)-coated glass plate, was used for covalent immobilization of cholesterol oxidase (ChOx) via N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. Results of linear sweep voltammetric measurements reveal that ChOx/PANI-MWCNT/ITO bioelectrode can detect cholesterol in the range of 1.29 to 12.93 mM with high sensitivity of 6800 nA mM−1 and a fast response time of 10 s. Photometric studies for ChOx/PANI-MWCNT/ITO bioelectrode indicate that it is thermally stable up to 45 °C and has a shelf life of approximately 12 weeks when stored at 4 °C. The results of these studies have implications for the application of this interesting matrix (PANI-MWCNT) toward the development of other biosensors.  相似文献   

3.
DNA biosensor based on chitosan film doped with carbon nanotubes   总被引:5,自引:0,他引:5  
Li J  Liu Q  Liu Y  Liu S  Yao S 《Analytical biochemistry》2005,346(1):107-114
A biosensor based on chitosan doped with carbon nanotube (CNT) was fabricated to detect salmon sperm DNA. Methylene blue (MB) was employed as a DNA indicator. It was found that CNTs can enhance the electroactive surface area threefold (0.28 +/- 0.03 and 0.093 +/- 0.06 cm(2) for chitosan-CNT- and chitosan-modified electrodes, respectively) and can accelerate the rate of electron transfer between the redox-active MB and the electrode. A low detection limit of 0.252 nM fish sperm DNA was achieved, and no interference was found in the presence of 5 microg/ml human serum albumin. The differential pulse voltammetry signal of MB was linear over the fish sperm DNA concentration range of 0.5-20 nM.  相似文献   

4.
An electrochemical approach for detection of individual single nucleotide polymorphisms (SNPs) based on nucleobase-conjugated apoferritin probe loaded with metal phosphate nanoparticles is reported. Coupling of the nucleotide-modified nanoparticle probe to the mutant sites of duplex DNA was induced by DNA polymerase I (Klenow fragment) to preserve Watson-Crick base-pairing rules. After sequential liquid hybridization of biotinylated DNA probes with mutant DNA and complementary DNA, the resulting duplex DNA helixes were captured to the surface of magnetic beads through a well known and specific biotin-streptavidin affinity binding. For signaling each of eight possible Single-nucleotide polymorphisms (SNPs), Pb, Cu, Cd and Zn phosphate-loaded apoferritin nanoparticle probes were linked to adenosine (A), cytidine (C), guanosine (G), and thymidine (T) mononucleotides, respectively. Monobase-conjugated apoferritin probes were coupled to the mutant sites of the formed duplex DNA in the presence of DNA polymerase. Electrochemical stripping analyses of the metals loaded in apoferritin nanoparticle probes provide a means for detection and quantification of mutant DNA. Each mutation captures different nucleotide-conjugated apoferritin probe and provide a distinct four-potential voltammogram, whose peak potentials reflect the identity of the mismatch. The method is sensitive enough to accurately determine AG mutation, as the most thermodynamically stable mismatch to detect, in the range of 50-600 pM. The proposed protocol provides a simple, fast, cost-effective, accurate and sensitive method for detection of SNPs.  相似文献   

5.
The preparations and performances of the novel amperometric biosensors for glucose based on immobilized glucose oxidase (GOD) on modified Pt electrodes are described. Two types of modified electrodes for the enzyme immobilization were used in this study, polyvinylferrocene (PVF) coated Pt electrode and gold deposited PVF coated Pt electrode. A simple method for the immobilization of GOD enzyme on the modified electrodes was described. The enzyme electrodes developed in this study were called as PVF-GOD enzyme electrode and PVF-Au-GOD enzyme electrode, respectively. The amperometric responses of the enzyme electrodes were measured at constant potential, which was due to the electrooxidation of enzymatically produced H2O2. The electrocatalytic effects of the polymer, PVF, and the gold particles towards the electrooxidation of the enzymatically generated H2O2 offers sensitive and selective monitoring of glucose. The biosensor based on PVF-Au-GOD electrode has 6.6 times larger maximum current, 3.8 times higher sensitivity and 1.6 times larger linear working portion than those of the biosensor based on PVF-GOD electrode. The effects of the applied potential, the thickness of the polymeric film, the amount of the immobilized enzyme, pH, the amount of the deposited Au, temperature and substrate concentration on the responses of the biosensors were investigated. The optimum pH was found to be pH 7.4 at 25 degrees C. Finally the effects of interferents, stability of the biosensors and applicability to serum analysis of the biosensor were also investigated.  相似文献   

6.
Yue R  Lu Q  Zhou Y 《Biosensors & bioelectronics》2011,26(11):4436-4441
A novel nitrite biosensor was developed through a sensing platform consisted of single-layer graphene nanoplatelet (SLGnP)-protein composite film. SLGnP with the virtues of excellent biocompatibility, conductivity and high sensitivity to the local perturbations can provide a biocompatible microenvironment for protein immobilization and a suitable electron transfer distance between electroactive centers of heme protein and electrode surface. A pair of well-defined and quasi-reversible cyclic voltammetric peaks that reflected the direct electrochemistry for ferric/ferrous couple of myoglobin (Mb) was achieved at the composite film modified electrode. Field emission scanning electron microscopy (FESEM) and ultraviolet visible spectra (UV-vis) were utilized to characterize the composite film. The results demonstrated that the morphology of the composite film was unique and the protein in the composite film retained its secondary structure similar to the native state. The composite film also displayed excellent electrocatalytic ability for the reduction of nitric oxide, which was applied to determine nitrite indirectly. It exhibited good electrochemical response to nitrite with a linear range from 0.05 to 2.5 mM and a detection limit of 0.01 mM.  相似文献   

7.
A method is described for construction of a novel amperometric triglyceride (TG) biosensor based on covalent co-immobilization of lipase, glycerol kinase (GK) and glycerol-3-phosphate oxidase (GPO) onto chitosan (CHIT) and zinc oxide nanoparticles (ZnONPs) composite film deposited on the surface of Pt electrode. The enzymes-ZnONPs-CHIT composite was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The sensor showed optimum response within 6 s at pH 7.5 and temperature of 35 °C. The sensor measures current due to electrons generated at 0.4 V against Ag/AgCl from H2O2, which is produced from triolein by co-immobilized enzymes. A linear relationship was obtained between a wide triolein concentration range (50-650 mg/dl) and current (mA) under optimum conditions. The biosensor showed high sensitivity, low detection limit (20 mg/dl) and good storage stability (half-life of 7 months at 4 °C). The biosensor was unaffected modified by a number of serum substances at their physiological concentrations. The biosensor was evaluated and employed for determination of TG in sera in apparently healthy subjects and persons suffering from hypertriglyceridemia.  相似文献   

8.
A highly catalytic activity microperoxidase-11 (MP-11) biosensor for H(2)O(2) was developed to immobilizing the heme peptide in didodecyldimethylammonium bromide (DDAB) lipid membrane. The enzyme electrode thus obtained responded to H(2)O(2) without electron mediator or promoter, at a potential of +0.10 V versus Agmid R:AgCl. A linear calibration curve is obtained over the range from 2.0 x 10(-5) to 2.4 x 10(-3) M. The biosensor responds to hydrogen peroxide in 15 s and has a detection limit of 8 x 10(-7) M (S/N=3) Providing a natural environment with lipid membrane for protein immobilization and maintenance of protein functions is a suitable option for the design of biosensors.  相似文献   

9.
Qu F  Yang M  Jiang J  Shen G  Yu R 《Analytical biochemistry》2005,344(1):108-114
Conducting polymer film was prepared by electrochemical polymerization of aniline. Multiwalled carbon nanotubes (MWNTs) were treated with a mixture of concentrated sulfuric and nitric acid to introduce carboxylic acid groups to the nanotubes. By using the layer-by-layer method, homogeneous and stable MWNTs and polyaniline (PANI) multilayer films were alternately assembled on glassy carbon (GC) electrodes. Conducting polymer of PANI had three main functions: (i) excellent antiinterference ability, (ii) protection ability in favor of increasing the amount of the MWNTs immobilized on GC electrodes, and (iii) superior transducing ability. The protection effect of PANI film and the electrostatic interaction between positively charged PANI and negatively charged MWNTs both attributed to immobilizing abundant MWNTs stably, thereby enhancing the catalytic activity. The layer-by-layer assembled MWNTs and PANI-modified GC electrodes offered a significant decrease in the overvoltage for the H2O2 and were shown to be excellent amperometric sensors for H2O2 from +0.2V over a wide range of concentrations. As an application example, by linking choline oxidase (CHOD), an amplified biosensor toward choline was prepared. The choline biosensor exhibited a linear response range of 1x10(-6) to 2x10(-3) M with a correlation coefficient of 0.997, and the response time and detection limit (S/N=3) were determined to be 3 s and 0.3 microM, respectively. The antiinterference biosensor displays a rapid response and an expanded linear response range as well as excellent reproducibility and stability.  相似文献   

10.
An electrochemical enzyme electrode for dopa and dopamine was developed via an easy and effective immobilization method. The enzyme tyrosinase was extracted from a plant source Amorphophallus companulatus and immobilized in a novel composite of two biopolymers: agarose and guar gum. This composite matrix-containing enzyme forms a self-adhering layer on the active surface of glassy carbon electrode, making it a selective and sensitive phenol sensor. Dopa and dopamine were determined by the direct reduction of biocatalytically liberated quinone species at -0.18V versus Ag/AgCl (3M KCl). The analytical characteristics of this sensor, including linear range, lower detection limit, pH, and storage stability, are described. It has reusability up to 15 cycles and a shelf life of more than 2 months.  相似文献   

11.
A novel chemiluminescence biosensor based on a supported lipid layer incorporated with ganglioside GM1 was developed for the detection of cholera toxin. The planar supported lipid membrane was prepared as biosensing interface via spontaneous spread of ganglioside-incorporated phospholipid vesicles on the octadecanethiol-coated gold surface. The specific interaction of multivalent CT by ganglioside GM1 molecules enables the biosensor to be implemented via a sandwiched format using a liposome probe functionalized with GM1 and horseradish peroxidase (HRP). Then, the presence of the target CT could be determined via the HRP-catalyzed enhanced chemiluminescence reaction. The developed strategy offers several unique advantages over conventional biosensors in that it allows for an easy construction and renewal of the sensing interface, a small background signal due to low non-specific adsorption of serum constituents on the lipid membrane, and effective immobilization of multiple biocatalytic amplifiers and recognition components via common phospholipid reagents. The developed biosensor was shown to give chemiluminescence signal in linear correlation to CT concentration within the range from 1pgmL(-1) to 1ngmL(-1) with readily achievable detection limit of 0.8pgmL(-1).  相似文献   

12.
Double-stranded calf thymus (dsCT)-DNA was electrochemically entrapped into polypyrrole-polyvinyl sulfonate (PPy-PVS) films deposited onto indium tin oxide (ITO) coated glass plates. These dsCT-DNA entrapped PPy-PVS/ITO films were characterized using cyclic voltammetry, UV-visible, Fourier transform infrared (FT-IR), scanning tunneling microscopy (STM), and electrochemical impedance measurements. Attempts made to use these dsCT-DNA entrapped PPy-PVS/ITO films for detection of 2-aminoanthracene (0.001-6.0 ppm) and 3-chlorophenol (0.01-55.0 ppm) revealed a response time of 30s and a shelf life of approximately 25 weeks when stored under desiccated conditions at 25 degrees C. The addition of salts such as Ca(2+) (250 ppm), Mg(2+) (200 ppm), Cl(-) (1560 ppm), and Na(+) (150 ppm) ions contained in water does not affect the observed amperometric response of the disposable dsCT-DNA entrapped PPy-PVS film-based electrochemical biosensor.  相似文献   

13.
The aim of this study was to investigate the potential of polyethylene glycol (PEG)-stabilized lipid bilayer disks as model membranes for surface plasmon resonance (SPR)-based biosensor analyses. Nanosized bilayer disks that included 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)2000] (DSPE-PEG2000-biotin) were prepared and structurally characterized by cryo-transmission electron microscopy (cryo-TEM) imaging. The biotinylated disks were immobilized via streptavidin to three different types of sensor chips (CM3, CM4, and CM5) varying in their degree of carboxymethylation and thickness of the dextran matrix. The bilayer disks were found to interact with and bind stably to the streptavidin-coated sensor surfaces. As a first step toward the use of these bilayer disks as model membranes in SPR-based studies of membrane proteins, initial investigations were carried out with cyclooxygenases 1 and 2 (COX 1 and COX 2). Bilayer disks were preincubated with the respective protein and thereafter allowed to interact with the sensor surface. The signal resulting from the interaction was, in both cases, significantly enhanced as compared with the signal obtained when disks alone were injected over the surface. The results of the study suggest that bilayer disks constitute a new and promising type of model membranes for SPR-based biosensor studies.  相似文献   

14.
Present study highlights the importance of RF sputtered NiO thin film deposited on platinum coated glass substrate (NiO/Pt/Ti/glass) as a potential matrix for the realization of highly sensitive and selective uric acid biosensor. Uricase has been immobilized successfully onto the surface of NiO matrix by physical adsorption technique. The prepared bioelectrode (uricase/NiO/Pt/Ti/glass) is utilized for sensing uric acid using the cyclic voltammetry and UV visible spectroscopy techniques. The bioelectrode is found to exhibit highly efficient sensing response characteristics with high sensitivity of 1278.48 μA/mM; good linearity of 0.05-1.0 mM, and very low Michaelis-Menten constant (k(m)) of 0.17 mM indicating high affinity of uricase towards the analyte. The enhanced response is due to the development of NiO matrix with good electron transport property and nanoporous morphology for effective loading of enzyme with preferred orientation.  相似文献   

15.
The composite film based on Nafion and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium chloride ([bmim]Cl) was used as an immobilization matrix to entrap myoglobin (Mb). The study of ionic liquid (IL)-Mb interaction by ultraviolet-visible (UV-vis) spectroscopy showed that Mb retains its native conformation in the presence of IL. The immobilized Mb displayed a pair of well-defined cyclic voltammetric peaks with a formal potential (Eo) of −0.35 V in a 0.1 M phosphate buffer solution (PBS) of pH 7.0. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide, based on which a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range for the determination of hydrogen peroxide was from 1.0 to 180 μM with a detection limit of 0.14 μM at a signal/noise ratio of 3. The apparent Michaelis constant () for the electrocatalytic reaction was 22.6 μM. The stability, repeatability, and selectivity of the sensor were evaluated. The proposed biosensor has a lower detection limit than many other IL-heme protein-based biosensors and is free from common interference in hydrogen peroxide biosensors.  相似文献   

16.
A prototype chronoamperometric biosensor for the determination of total cholesterol was developed that consists of a homemade potentiostat and disposable strips immobilized with Fe(3)O(4), cholesterol oxidase (ChOx), and cholesterol esterase (ChE). The principle of sensing cholesterol is based on the detection of reduction signal of hydrogen peroxide generated in two enzymatic reactions. The co-immobilization of ChE and ChOx allows the sensor to detect both concentrations of esterified and free cholesterol. The effects of biosensor on catalyst, enzymes, applied potential, and buffer pH was investigated, and the operation conditions were optimized. The detection of cholesterol can be accomplished in one step, a 10 microL of sample was dropped onto the area of sensing strip and the reduction signal was obtained at an applied potential of -200 mV (vs. Ag/Ag(+)). The pre-reaction time was set at 15s before applying potential on the strip and the sampling time was 5s. The sensing device displays a linear response over the range of 100-400mg/dL (R(2)=0.999) for cholesteryl oleate. The coefficient variation was determined as 5.06% (N=20) for 100mg/dL cholesteryl oleate and the detection limit is 19.4 mg/dL (S/N=3). The probable interferences in bio-matrix were selected to test the selectivity and no significant response was observed in the biosensor.  相似文献   

17.
Large catalase based bioelectrode for biosensor application   总被引:1,自引:0,他引:1  
A large catalase (CAT) (Mr ~ 90 kDa), immobilized on multiwalled carbon nanotubes—Nafion® (MWCNT-NF) matrix and encapsulated with polyethylenimine (PEI) on glassy carbon electrode (GCE), showed a pair of nearly reversible cyclic voltammetric peaks for Fe(III)/Fe(II) couple with formal potential of about −0.45 V (vs. Ag/AgCl electrode at pH 7.5). PEI significantly reduced the charge transfer resistance and stabilized the bioelectrode through electrostatic interaction. The electron transfer rate constant and surface coverage of the immobilized CAT were 1.05 ± 0.2 s−1 and 2.1 × 10−10 mol cm−2, respectively. Studies on electrocatalytic activity and kinetics of GCE/MWCNT-NF/CAT/PEI for hydrogen peroxide (H2O2) showed the apparent Michaelis-Menten constant of 3 mM, linear response in the range of 10 μM to 5 mM, response time of ~ 2 s for steady state current, and detection limit of ~ 1 μM. A high operational and storage stability was also demonstrated for the bioelectrode. Hence, the direct electrochemistry of the large catalase and its potential biosensor application have been established through this investigation.  相似文献   

18.
Xue H  Shen Z  Li C 《Biosensors & bioelectronics》2005,20(11):2330-2334
A new type of in situ electropolymerization method was used for electrochemical biosensor design. The biologic film was prepared by in situ electropolymerization of aniline into microporous polyacrylonitrile-coated platinum electrode in the presence of glucose oxidase. The novel glucose biosensor exhibited good selectivity, sensitivity and stability, which showed no apparent loss of activity after 100 consecutive measurements and intermittent usage for 100 days with storage in a phosphate buffer at 4 degrees C. Blood glucose determinations agreed well with standard hospital laboratory analysis. The construction and operational parameters of the biosensor were also optimized.  相似文献   

19.
Phenylketonuria (PKU) is a disease characterized by an inability to metabolize the amino acid l-phenylalanine. The resulting buildup leads to brain damage and ultimately mental retardation in children if their phenylalanine intake is not carefully controlled. The National Institutes of Health recently suggested that people with PKU monitor their phenylalanine levels throughout their life and be put on a low phenylalanine diet. As an alternative approach to analysis using blood, this paper describes the first reagentless dehydrogenase based sensor for the determination of phenylalanine in human urine. The clinical range of phenylalanine in human urine is 20-60mM for people with PKU. Although most clinical analysis is performed using blood, urine was chosen due to its high concentrations of phenylalanine in phenylketonurics, as well as its simple, safe, and painless collection. The sensor is comprised of a carbon paste electrode with nicotinamide adenine dinucleotide (NAD(+)), phenylalanine dehydrogenase (PDH), uricase, and an electron mediator, 3,4-dihydroxybenzaldehyde (3,4-DHB), all mixed into the paste. The electron mediator reacts with the electrode surface to produce two redox species, which catalytically oxidize NADH. The behavior of the electron mediator mixed into a carbon paste electrode has not been previously investigated. Cyclic voltammetry was used to characterize the sensor's response to NADH, and with the addition of PDH and NAD(+) to the paste, its response to phenylalanine in human urine. The limit of detection for phenylalanine is 0.5mM (S/N=3).  相似文献   

20.
Zinc oxide nanoparticles (ZnO-NPs) were synthesized from zinc nitrate by simple and efficient method in aqueous media at 55°C without any requirement of calcinations step. A mixture of ZnO-NPs and pyrrole was eletropolymerized on Pt electrode to form a ZnO-NPs-polypyrrole (PPy) composite film. Xanthine oxidase (XOD) was immobilized onto this nanocomposite film through physiosorption. The ZnO-NPs/polypyrrole/Pt electrode was characterized by Fourier transform infrared (FTIR), cyclic voltammetry (CV), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of XOD. The XOD/ZnO-NPs-PPy/Pt electrode as working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode were connected through a potentiostat to construct a xanthine biosensor. The biosensor exhibited optimum response within 5s at pH 7.0, 35°C and linearity from 0.8 μM to 40 μM for xanthine with a detection limit 0.8 μM (S/E=3). Michaelis Menten constant (K(m)) for xanthine oxidase was 13.51 μM and I(max) 0.071 μA. The biosensor measured xanthine in fish meat and lost 40% of its initial activity after its 200 uses over 100 days, when stored at 4°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号