首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is widely recognized that the mesoscale eddies play an important part in the biogeochemical cycle in ocean ecosystem, especially in the oligotrophic tropical zones. So here a heterogeneous cyclonic eddy in its flourishing stage was detected using remote sensing and in situ biogeochemical observation in the western South China Sea (SCS) in early September, 2007. The high-performance liquid chromatography method was used to identify the photosynthetic pigments. And the CHEMical TAXonomy (CHEMTAX) was applied to calculate the contribution of nine phytoplankton groups to the total chlorophyll a (TChl a) biomass. The deep chlorophyll a maximum layer (DCML) was raised to form a dome structure in the eddy center while there was no distinct enhancement for TChl a biomass. The integrated TChl a concentration in the upper 100 m water column was also constant from the eddy center to the surrounding water outside the eddy. However the TChl a biomass in the surface layer (at 5 m) in the eddy center was promoted 2.6-fold compared to the biomass outside the eddy (p < 0.001). Thus, the slight enhancement of TChl a biomass of euphotic zone integration within the eddy was mainly from the phytoplankton in the upper mixed zone rather than the DCML. The phytoplankton community was primarily contributed by diatoms, prasinophytes, and Synechococcus at the DCML within the eddy, while less was contributed by haptophytes_8 and Prochlorococcus. The TChl a biomass for most of the phytoplankton groups increased at the surface layer in the eddy center under the effect of nutrient pumping. The doming isopycnal within the eddy supplied nutrients gently into the upper mixing layer, and there was remarkable enhancement in phytoplankton biomass at the surface layer with 10.5% TChl a biomass of water column in eddy center and 3.7% at reference stations. So the slight increasing in the water column integrated phytoplankton biomass might be attributed to the stimulated phytoplankton biomass at the surface layer.  相似文献   

2.
The Yolo Bypass, a large, managed floodplain that discharges to the headwaters of the San Francisco Estuary, was studied before, during, and after a single, month-long inundation by the Sacramento River in winter and spring 2000. The primary objective was to identify hydrologic conditions and other factors that enhance production of phytoplankton biomass in the floodplain waters. Recent reductions in phytoplankton have limited secondary production in the river and estuary, and increased phytoplankton biomass is a restoration objective for this system. Chlorophyll a was used as a measure of phytoplankton biomass in this study. Chlorophyll a concentrations were low (<4 μg l?1) during inundation by the river when flow through the floodplain was high, but concentrations rapidly increased as river inflow decreased and the floodplain drained. Therefore, hydrologic conditions in the weeks following inundation by river inflow appeared most important for producing phytoplankton biomass in the floodplain. Discharges from local streams were important sources of water to the floodplain before and after inundation by the river, and they supplied dissolved inorganic nutrients while chlorophyll a was increasing. Discharge from the floodplain was enriched in chlorophyll a relative to downstream locations in the river and estuary during the initial draining and later when local stream inflows produced brief discharge pulses. Based on the observation that phytoplankton biomass peaks during drainage events, we suggest that phytoplankton production in the floodplain and biomass transport to downstream locations would be higher in years with multiple inundation and draining sequences.  相似文献   

3.
4.
Species composition and seasonal succession of phytoplankton were analyzed in a lowland river located in South Banat (Ponjavica, Serbia). As a result of human activity, a network of irrigation channels was built on the Ponjavica River’s upper and lower courses. These channels reduce the water level in the river and help to create favorable conditions for accelerated eutrophication processes. Eight phytoplankton divisions with 444 taxa were present. Physical and chemical testing of water, phytoplankton abundance and biomass, as well as chlorophyll a concentration showed a high level of eutrophication. Cyanobacterial biomass developed in 2002 with dominance of Microcystis aeruginosa and Aphanizomenon flos-aquae. Changes in phytoplankton composition were observed during 2008, characterized by the appearance and dominance of Cylindrospermopsis raciborskii when this species accounted for more than 85% of the total phytoplankton biovolume. The change in dominant phytoplankton functional groups was observed: codons H1 and M characterizing summer in 2002 were replaced by codons SN and S1 in 2008. This study compares the presence of C. raciborskii with other phytoplankton species in relation to water quality parameters. High abundance of this species correlated positively with biochemical oxygen demand and turbidity, and negatively with NO3-N concentrations during the study period.  相似文献   

5.
The impact of nutrient enrichment on the phytoplankton community structure, and particularly cyanobacteria, was studied in a 3-week mesocosm experiment conducted in August 2001 in the Archipelago Sea, a part of the northern Baltic Sea. The factorial design experiment included daily additions of nitrogen (N) and phosphorus (P) at two mass ratios, 1N:1P and 7N:1P, respectively, additions of iron (Fe) and a synthetic chelator, ethylenediaminetetraacetic acid (EDTA). The floating enclosures (400 l) were sampled for analyses of phytoplankton biomass and community structure, phytoplankton primary production, chlorophyll a, nutrients, and hepatotoxins. Chlorophyll a concentration, phytoplankton biomass and primary production increased most in the 7N:1P treatment. The increase was mainly due to an abundant growth of chlorophytes (Dictyosphaerium subsolitarium, Kirchneriella spp., Monoraphidium contortum, and Oocystis spp.), pennate diatoms (especially Nitzschia spp.), dinophytes and the chroococcalean cyanobacterium Synechococcus sp. The nutrient enrichments had no effect on the total biomass of N2-fixing cyanobacteria. Nevertheless, the biomass of Anabaena spp. was highest in the enrichments with a low N/P ratio. Chlorophyll a concentration and total phytoplankton biomass were not affected by Fe or EDTA, but Fe alone had a positive effect on the chlorophyte Kirchneriella sp. The N2-fixing cyanobacteria Aphanizomenon sp. responded positively to Fe alone and to both Fe and EDTA added together. The hepatotoxin concentration increased during the experiment, but no clear responses to nutrient enrichments were found. Our study showed species-specific responses to nutrient enrichments among the N2-fixing cyanobacteria. Although the total phytoplankton production was not Fe-limited; the availability of Fe clearly affected the phytoplankton community structure.  相似文献   

6.
Globally distributed observations of size-fractionated chlorophyll a and temperature were used to incorporate temperature dependence into an existing semi-empirical model of phytoplankton community size structure. The additional temperature-dependent term significantly increased the model’s ability to both reproduce and predict observations of chlorophyll a size-fractionation at temperatures below 2°C. The most notable improvements were in the smallest (picoplankton) size-class, for which overall model fit was more than doubled, and predictive skill was increased by approximately 40%. The model was subsequently applied to generate global maps for three phytoplankton size classes, on the basis of satellite-derived estimates of surface chlorophyll a and sea surface temperature. Polar waters were associated with marked decline in the chlorophyll a biomass of the smallest cells, relative to lower latitude waters of equivalent total chlorophyll a. In the same regions a complementary increase was seen in the chlorophyll a biomass of larger size classes. These findings suggest that a warming and stratifying ocean will see a poleward expansion of the habitat range of the smallest phytoplankton, with the possible displacement of some larger groups that currently dominate. There was no evidence of a strong temperature dependence in tropical or sub-tropical regions, suggesting that future direct temperature effects on community structure at lower latitudes may be small.  相似文献   

7.
1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte‐dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L?1 P and 10 mg L?1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within‐treatment variability. 4. Higher densities of planktivorous fish shifted phytoplankton composition toward smaller algae (GALD < 50 μm). High nutrient loadings selected in favour of chlorophytes and cyanobacteria, while biovolumes of diatoms and dinophytes decreased. High temperatures also may increase the contribution of cyanobacteria to total phytoplankton biovolume in shallow lakes.  相似文献   

8.
This study examined the effects of a freshwater filter feeding bivalve (Corbicula leana Prime) and large zooplankton (>200 μm, mostly cladocerans and copepods) on the phytoplankton communities in two lakes with contrasting trophic conditions. A controlled experiment was conducted with four treatments (control, zooplankton addition, mussel addition, and both zooplankton and mussel addition), and each established in duplicate 10-l chambers. In both lakes there were significant effects of mussel grazing on phytoplankton density and biomass. The effects were greater in mesotrophic Lake Soyang than in hypertrophic Lake Ilgam. Effects of zooplankton grazing did not differ between these lakes, and zooplankton effects on phytoplankton were much less than the effects of mussels. Although mussels exerted a varying effect on phytoplankton according to their size, mussels reduced densities of almost all phytoplankton taxa. Total mean filtering rate (FR) of mussels in Lake Soyang was significantly greater than that in Lake Ilgam (p=0.002, n=5). Carbon fluxes from phytoplankton to mussels (977–2,379 μgC l?1d?1) and to zooplankton (76–264 μgC l?1 d?1) were always greater in Lake Ilgam due to the greater phytoplankton biomass (p<0.01, n=6). Based on the C-flux to biomass ratios, the mussels consumed 170–754% (avg. 412%) of phytoplankton standing stock in Lake Soyang, and 38–164% (avg. 106%) in Lake Ilgam per day. The C-flux to biomass ratio for mussels within each lake was much greater than for large zooplankton. Mussels reduced total phosphorus concentration by 5–34%, while increasing phosphate by 30–55% relative to the control. Total nitrogen also was reduced (by 9–25%), but there was no noticeable change in nitrate among treatments. The high consumption rate of phytoplankton by Corbicula leana even in a very eutrophic lake suggests that this mussel could affect planktonic and benthic food web structure and function by preferential feeding on small seston and by nutrient recycling. Control of mussel biomass therefore might be an effective tool for management of water quality in shallow eutrophic lakes and reservoirs in Korea.  相似文献   

9.
A dramatic decline in biomass and areal coverage of the submersed macrophyte Myriophyllum spicatum in Lake Wingra, Wisconsin, USA during the mid-1970's is documented using aerial photography, vegetation surveys, and quadrat biomass sampling. Over the same period, light penetration as measured by Secchi disc transparency and extinction coefficient decreased substantially. During this period, extinction coefficient was closely correlated with chlorophyll a levels implicating phytoplankton as the major source of decreased light penetration. A growth model for M. spicatum predicts a substantial decline in macrophyte biomass when extinction coefficient is increased to the levels reported since 1977. Available data do not show whether the phytoplankton increase preceeded or followed the macrophyte decline. Nonetheless it is clear that phytoplankton growth can account for a substantial portion of the decline and that macrophyte recovery will be difficult given the phytoplankton-induced decrease in water clarity.  相似文献   

10.
11.
The development and metabolism of epilimnetic plankton from a highly humic lake was followed in late summer, when the predominant zooplankton species, Daphnia longispina, was very abundant (ca. 200 ind. l?1). The experiment was made in two tanks: one with an unaltered plankton assemblage and one with larger zooplankton removed. The scarce phytoplankton community was also simple, consisting mainly of one Cryptomonas and two Mallomonas species. The abundance and species composition of smaller plankton was heavily influenced by grazing of Daphnia. In particular, the biomass, of heterotrophic flagellates increased after the removal of Daphnia. The biomass and production of bacterioplankton were not affected, and remained several times higher than that of phytoplankton. Bacterial production and grazing on bacteria were balanced, and when Daphnia was removed its grazing activity was compensated by flagellates. The removal of Daphnia did not affect the respiration or community net production of plankton. Among organisms smaller than zooplankton, bacteria seemed to be responsible for most of the respiration. The community net production was consistently negative even at the water surface, indicating an allochthonous carbon source. The results suggest that phytoplankton primary production was insufficient for the secondary production in the epilimnetic water of the study lake. The food requirements of bacteria and zooplankton, as well as of flagellates, each exceeded that supplied by phytoplankton primary production. The simple food chains in this experiment made it possible to reveal the functioning of the community so completely that dissolved organic matter is certainly comparable to or exceeds the importance of phytoplankton primary production as an energy and carbon source for food webs in this humic lake.  相似文献   

12.
Enriched bottle experiments were conducted in situ during winter (January and February) and summer (July and August) 2001 to examine the effects of nutrient enrichments (+ N, + P and + NP) on phytoplankton in Bizerte Lagoon, Tunisia. Chlorophyll a (Chl a), ranging from 3.05 μg L−1 in winter to 4.52 μg L−1 in summer, was dominated by the small size-faction (<5 μm) during both seasons. However, the contribution of the large size-fraction (5-200 μm) to Chl a increased from winter (26%) to summer (37%). Similarly, the carbon biomass of the 5-200 μm algae increased during the July/August period that was characterised by the high proliferation of several diatom taxa. In winter, N was the limiting element for phytoplankton growth. Its addition alone (+ N) or with P (+ NP) increased both the <5 μm and 5-200 μm Chl a concentrations. There was no change in the phytoplankton size structure, with the small cells dominating the final algal biomass in all treatments after 5 days. In summer, N and P limited the phytoplankton, but small and large algae exhibited diverse responses to different nutrient enrichments: addition of P increased the Chl a only in the 5-200 μm fraction, the + N treatment enhanced both size classes, and the NP fertilisation mostly stimulated the biomass of large cells. Consequently, the N and P addition in summer was followed by a significant change in the phytoplankton size structure, since both size-fractions contributed equally to the final Chl a biomass. Within the 5-200 μm algal community, various taxa had diverse responses to the nutrient supply during both seasons, leading to a change in the final community composition. The autotrophic flagellates appeared to grow well under N-deficient conditions. In contrast, diatom growth and biomass were mostly stimulated by the N enrichment while dinoflagellates exhibited the highest increase in their growth and biomass with P fertilisation. Our results suggest that the increasing anthropogenic supply of nutrients in the lagoon may influence algal dynamics as well as productivity in different ways depending on the nutrient composition.  相似文献   

13.
The global climate change may lead to more extreme climate events such as severe flooding creating excessive pulse-loading of nutrients, including nitrogen (N), to freshwaters. We conducted a 3-month mesocosm study to investigate the responses of phytoplankton, zooplankton and Vallisneria spinulosa to different N loading patterns using weekly and monthly additions of in total 14 g N m?2 month?1 during the first 2 months. The monthly additions led to higher phytoplankton chlorophyll a and total phytoplankton biomass than at ambient conditions as well as lower leaf biomass and a smaller ramet number of V. spinulosa. Moreover, the biomass of cyanobacteria was higher during summer (August) in the monthly treatments than those with weekly or no additions. However, the biomass of plankton and macrophytes did not differ among the N treatments at the end of the experiment, 1 month after the termination of N addition. We conclude that by stimulating the growth of phytoplankton (cyanobacteria) and reducing the growth of submerged macrophytes, short-term extreme N loading may have significant effects on shallow nutrient-rich lakes and that the lakes may show fast recovery if they are not close to the threshold of a regime shift from a clear to a turbid state.  相似文献   

14.
Here we report on a mesocom study performed to compare the top-down impact of microphagous and macrophagous zooplankton on phytoplankton. We exposed a species-rich, summer phytoplankton assemblage from the mesotrophic Lake Schöhsee (Germany) to logarithmically scaled abundance gradients of the microphagous cladoceran Daphnia hyalina×galeata and of a macrophagous copepod assemblage. Total phytoplankton biomass, chlorophyll a and primary production showed only a weak or even insignificant response to zooplankton density in both gradients. In contrast to the weak responses of bulk parameters, both zooplankton groups exerted a strong and contrasting influence on the phytoplankton species composition. The copepods suppressed large phytoplankton, while nanoplanktonic algae increased with increasing copepod density. Daphnia suppressed small algae, while larger species compensated in terms of biomass for the losses. Autotrophic picoplankton declined with zooplankton density in both gradients. Gelatinous, colonial algae were fostered by both zooplankton functional groups, while medium-sized (ca. 3,000 µm3), non-gelatinous algae were suppressed by both. The impact of a functionally mixed zooplankton assemblage became evident when Daphnia began to invade and grow in copepod mesocosms after ca. 10 days. Contrary to the impact of a single functional group, the combined impact of both zooplankton groups led to a substantial decline in total phytoplankton biomass.  相似文献   

15.
The seasonal variation of phytoplankton in an eutrophic tropical reservoir was evaluated through photosynthetic pigments analyzed by HPLC. The contributions of algal classes to total chlorophyll a (TChl-a) were estimated by two procedures. The first one used fixed marker pigment/chlorophyll a ratio available from culture studies of the major species of each class. In the second procedure, a matrix factorization program (CHEMTAX) was used to analyze the pigment data. The pigment data were compared with carbon biomass estimated from microscope analysis. A significant correlation between total chlorophyll a (measured by HPLC) and total biomass was obtained, indicating only a slight variation in the content of algal chlorophyll a when compared to its fluctuations in carbon biomass. The interpretation of pigment data with CHEMTAX resulted in a good agreement with biomass. Although displaying some differences, the general pattern of the phytoplankton community dynamics and the major shifts in composition, biomass and the cyanobacterial bloom were evidenced. In contrast, Chl-a biomass estimates from fixed Xan/Chl-a ratios presented poor agreement with microscope data and did not register the principal changes in phytoplankton. Our results also highlighted the needs of better understanding of the relationships between marker pigments, chlorophyll-a and algal biomass.  相似文献   

16.
This study focused on unraveling the natural mechanism for the frequent shifts in alternative regimes in pristine shallow lakes of the Boreal Plains, Alberta, Canada. The lakes tend to be clear and dominated by submerged aquatic vegetation (SAV) or turbid and dominated by phytoplankton. We report on the inter-annual response of 23 lakes from 2001 to 2007. We explore the effect of fluctuations in annual precipitation on the lake response including water depth, total phosphorus (TP) concentration, turbidity, phytoplankton biomass, SAV biomass, and the proportion of clear and turbid lakes. The regime switches appear driven by the transient dynamics of phytoplankton, and dilution of nutrients, phytoplankton biomass, and turbidity during wet years, and evapoconcentration during dry years. Increased precipitation was correlated with decreased phytoplankton biomass, TP concentration, chloride concentration, and turbidity. In 2005, the wettest year, no phytoplankton-dominated lakes were observed. During the driest year (2002), the phytoplankton-dominant regime (>18 μg chl-a L?1) occurred in 22% of lakes, which was higher than the study period average. SAV biomass was not directly affected by precipitation, but was negatively associated with phytoplankton biomass and positively associated with the previous year’s SAV growth. SAV biomass was carried over from year-to-year, and the occurrence of SAV-dominated (>25% cover) lakes was significantly higher in 2007 (90%) following 3 years of high precipitation levels.  相似文献   

17.
The purpose of this microcosm experiment was to determine whether the freshwater snail Bellamya aeruginosa affected phytoplankton community and water quality. Three treatments of different snail densities (low, medium, and high) and a control (no snails) were set up in twelve enclosures. Chlorophyll a (chl a), transparency (SD), water temperature (WT), dissolved oxygen (DO), pH, nutrients, and abundance of phytoplankton were determined on days 0, 3, 7, 11, 15, 23, 31, 46, and 61. The total chl a concentration decreased and SD increased in the treatments, whereas the proportion of cyanobacteria chl a increased. Bellamya seemed to result indirectly in a decrease of DO, by reducing the algal biomass rather than by respiration. A significant decrease in nitrogen–phosphorus ratios was observed in the treatments. In the enclosed system the abundance of colonial green algae decreased over time whereas that of cyanobacteria and flagellates increased. Principal response curves showed that both phytoplankton community and water quality in the medium and high-density treatments were consistently different from in the control. These results indicate that the presence of snails resulted in a significant change of water physicochemical properties and phytoplankton community.  相似文献   

18.
Juvenile Nile tilapia (Oreochromis niloticus) are omnivorous, and the question asked in this study is how they affect on their environment? Do they mainly act as predators on the cladoceran zooplankton or do they compete with the cladocerans for phytoplankton? This problem was studied in three ponds with and three ponds without small tilapia (3–5 cm). The fish growth rate, the succession of plankton species and the changes in abiotic conditions, were monitored over a period of 67 days. The fish biomass was kept low and the mean was approximately constant (12.6 g m?2) during the experiment. Phosphate was added to avoid phytoplankton nutrient limitation. Although the diet of Nile tilapia contained both phytoplankton and zooplankton, the fish affected the ecosystem in a similar way as zooplanktivorous fish. The fish ponds got more phytoplankton due to increase of Chlorophyta. Effects on the other phytoplankton groups Euglenophyta, Bacillariophyta, Cryptophyta and Cyanophyta could not be registered. The ponds without fish had higher densities of Daphnia lumholtzi and D. barbata. The other Cladocerans seemed less influenced by fish presence. The relative fish growth rate was most positively correlated with the density of Daphnia lumholtzi, Diaphanosmoa excisum and Bosmina longirostris. Tilapia seemes to have two feeding modes: (1) preying on large zooplankton and (2) unselective filtration of small planktonic organisms such as phytoplankton. In our experiment the first feeding mode affected the ecosystem more than the second.  相似文献   

19.
The relationships between producers (e.g., macrophytes, phytoplankton and epiphytic algae) and snails play an important role in maintaining the function and stability of shallow ecosystems. Complex relationships exist among macrophytes, epiphytic algae, phytoplankton, and snails. We studied the effects of snail communities (consisting of Radix swinhoei, Hippeutis cantori, Bellamya aeruginosa, and Parafossarulus striatulus) on the biomass of phytoplankton and epiphytic algae as well as on the growth of three species of submerged macrophytes (Hydrilla verticillata, Vallisneria natans, and one exotic submerged plant, Elodea nuttallii) in a 90‐day outdoor mesocosm experiment conducted on the shore of subtropical Lake Liangzihu, China. A structural equation model showed that the snail communities affected the submerged macrophytes by grazing phytoplankton and epiphytic algae (reduction in phytoplankton Chl‐a and epiphytic algal abundance), enhancing the biomass of submerged macrophytes. Highly branched macrophytes with high surfaces and morphologies and many microhabitats supported the most snails and epiphytic algae (the biomass of the snail communities and epiphytic algae on Hverticillata was greater than that on Vnatans), and snails preferred to feed on native plants. Competition drove the snails to change their grazing preferences to achieve coexistence.  相似文献   

20.
In laboratory experiments we tested the hypothesis that nutrients supplied by fish and zooplankton affect the structure and dynamics of phytoplankton communities. As expected from their body size differences, fish released nutrients at lower mass-specific rates than Daphnia. On average, these consumers released nutrients at similar N:P ratios, although the ratios released by Daphnia were more variable than those released by fish. Nutrient supply by both fish and Daphnia reduced species richness and diversity of phytoplankton communities and increased algal biomass and dominance. However, nutrient recycling by fish supported a more diverse phytoplankton community than nutrient recycling by Daphnia. We conclude that nutrient recycling by zooplankton and fish have different effects on phytoplankton community structure due to differences in the quality of nutrients released. Received: 21 December 1998 / Accepted: 31 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号