首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eighteen acid textile dyes were evaluated as histological stains with emphasis on nucleolar staining. A solution composed of 1 ml of 2 N HCI added to 100 ml of 2% Pontacyl dark green B stained the nucleolus of bronchiogenic, prostatic and squamous cell carcinoma, of melanoma, and of osteogenic and chondrosarcoma cells intensely. In benign hyperplasia, epithelial cell nucleoli were stained lightly. The epithelial cells of normal tissue adjacent to squamous cell carcinoma, and those of leukoplakia, showed deeply stained nucleoli.  相似文献   

2.
Tissue fixed in 10% formalin, formol saline, CaCO3 or phosphate buffer neutralized formalin, Baker's formol calcium, Cajal's formol ammonium bromide, formalin-95% ethanol 1:9, formalin-methanol 1:9, Lillie's methanol-chloroform or Salthouse's formol cetyltrimethylammonium bromide was dehydrated and embedded in paraffin. Sections were attached to slides with either albumen or gelatine adhesive and processed throughout at room temperature of 22-25 C. Mordanting 30-60 min in 1% iron alum was followed by a 10 min wash in 4 changes of distilled water. Myelin was stained in a gallocyanin self-differentiating solution for 1-2.5 hr; thick sections requiring the longer time. The staining solution (pH approximately 7.4) consisted of Na2CO3, 90 mg; distilled water, 100 ml; gallocyanin, 250 mg; and ethanol, 5 ml. The ethanol was added to this mixture last, and after the other ingredients had been boiled and then cooled to room temperature. After a staining and thorough washing, Nissl granules were stained for 5-10 min in a solution consisting of: 0.1 M acetic acid, 60 ml; 0.1 M sodium acetate, 40 ml; methyl green, 500 mg. Washing, dehydration, clearing and mounting completed the process. Myelin sheaths were stained dark violet; neuronal nuclei, light green with dark granules of chromatin; nucleoli of motor cells and erythrocytes, dark violet; cytoplasm, green with dark green Nissl granules. The simple and reliable method can be adapted easily for use with automatic tissue processors.  相似文献   

3.
Of 84 dyes tested, 26 were found to give a stable solution with celestine blue B dispersions which simultaneously stained nuclei and cytoplasm. The cytoplasmic dye is dissolved in celestine blue B dispersion prepared by the method of Cray et al. (1956). Croceine scarlet (C.I. 286), in the proportion of 0.38 gm to 114 ml of celestine blue B dispersion, gives results strikingly similar to hematoxylin-eosin when used for 2 min on a wide variety of tissues. No differentiation, other than that which occurs during dehydration, is necessary.  相似文献   

4.
Tissue fixed in 10% formalin, formalin-95% ethanol 1:s CaCO2 or phosphate buffer neutralized formalin, or methanol-chloroform 2:1, was dehydrated and embedded in paraffin or double-embedded by infiltration in 1% celloidin followed by a chloroform-paraffin sequence. Sections were attached to slides with either albumen or gelatine adhesive and processed throughout at room temperature of 24-26 C. For either method, mordanting 30-60 min in 1% iron alum was followed by a 10 min wash in 4 changes of distilled water. For brazilin-toluidne blue O, myelin was stained for 20-60 min, depending upon section thickness, in a self-differentiating solution consisting of: 0.15% Li2CO3 75 ml; 6% brazilin in 95% ethanol, 25 ml; and NaIO3 75 mg. After a thorough washing, Nissl material was stained for 3-8 min in a solution consisting of: 0.1 M acetic acid, 90 ml; 0.1 M sodium acetate, 10 ml; and 1% toluidine blue 0, 2.5 ml. For hematoxylin-Darrow red, myelin was stained for 2-6 hr in a self-differentiating solution consisting of: 0.15% Li2,CO3 95 ml; 10% hematoxylin in 95% ethanol, 5 ml; and NaIO3 25 mg. After a thorough washing, Nissl material was stained for 20 min or less in a solution consisting of: 0.1 M acetic acid, 90 ml; 0.1 M sodium acetate, 10 ml; Darrow red, 25 mg. This mixture was first boiled, cooled to room temperature and filtered. In both methods, washing, dehydration, clearing, and mounting completed the process. In the brazilin-toluidine blue technic, myelin sheaths were stained reddish purple; neuronal nuclei light blue with dark granules of chromatin; nucleoli dark blue; and cytoplasm blue with dark blue Nissl granules. In the hematoxylin-Darrow red procedure, myelin sheaths were blue-black; nuclei light red with dark granules of chromatin; nucleoli almost black; and cytoplasm red with bright red Nissl granules.  相似文献   

5.
The tissue is fixed in 10% neutral saline formalin for 1 day to 3 wk depending on the size of the block, dehydrated and embedded in paraffin. The sections are stained at 57° C for 2 hr, then at 22° C for 30 min, in a 0.0125% solution of Luxol fast blue in 95% alcohol acidified by 0.1% acetic acid. They are differentiated in a solution consisting of: Li2CO3, 5.0 gm; LiOH-H2O, 0.01 gm; and distilled water, 1 liter at 0-1° C, followed by 70% alcohol, and then treated with 0.2% NaHSO3. They are soaked 1 min in an acetic acid-sodium acetate buffer 0.1 N, pH 5.6, then stained with 0.03% buffered aqueous neutral red. Sections are washed in distilled water, 1 sec, then treated with the following solution: CuSO4·5H2O, 0.5 gm; CrK(SO4)2·12H2O, 0.5 gm; 10% acetic acid, 3 ml; and distilled water, 250 ml. Dehydration, clearing and covering complete the process. Myelin sheaths are stained bright blue; meninges and the adventitia of blood vessels are blue; red blood cells are green. Nissl material is stained brilliant red; axon hillocks, axis cylinders, ependyma, nuclei and some cytoplasm of neuroglia, media and endothelium of blood vessels are pink.  相似文献   

6.
TO enable staining of insoluble calcium salts with glyoxal bis(2-hydroxyanil) (GBHA), the original solution containing 2 ml of 0.4% GBHA in absolute ethanol, and 0.3 ml of aqueous 5% NaOH, and limited to staining only soluble calcium salts, was modified as follows: 1, 2 ml of 0.4% GBHA in absolute ethanol in 0.6 ml of 10% aqueous NaOH; 11, 0.1 gm GBHA in 2 ml of 3.4% NaOH in 75% ethanol. To prevent diffusion and loss of calcium, the tissues were processed by the freeze-substitution or freeze-dry method and sections stained without removing the paraffin. Modification I is effective only when 1 or 2 drops placed on the section are evaporated gradually to dryness, concentrating the GBHA and NaOH on the insoluble calcium salts. Modification II is effective when dried or poured on the the section and allowed to stain for 5 min. The stained slides are immersed for 15 min in 90% ethanol saturated with KCN and Na2CO3 for specificity to calcium; rinsed and counterstained in 95% ethanol containing 0.1% each of fast green FCF and methylene blue; rinsed and dehydrated in ethanol; deparaffinized and cleared in xylene; and mounted in neutral synthetic resin. Although the modified methods tested on models failed to stain reagent grade CaCO3 and Ca3(PO4)2 crystals completely, apatite in developing vertebrae and calcified plaques in soft tissues were stained intensely red. The distribution of gross deposits of insoluble calcium salt in tissue sections corresponded with that shown in adjacent sections by the alizarin red S, ferrocyanide, and von Kossa methods. The modified GBHA method revealed smaller quantities of insoluble as well as soluble calcium salts discretely within cells where the other methods failed; also, calcium in cytoplasm of hypertrophied cartilage cells of developing vertebrae, and in cytoplasm of renal tubular cells of magnesium-deficient rats, not described previously, was demonstrated.  相似文献   

7.
After fixing in phosphate-buffered 5% glutaraldehyde, pH 6.8, by perfusion, brains were sliced to 3-5 mm pieces which were placed in the fixative for 5-7 days. The pieces were washed through several changes of 2.26% NaH2PO4 for 12 hr, 30 μ frozen sections cut, and mordanted 2 days in an equal-parts mixture of 3.5% CrO3 and 5% Na-tartrate, which had been aged at 20-25 C for 20 days prior to use. After washing in distilled water, the sections were put into a solution containing AgNO3, 20 gm; and KNO3, 15 gm, in distilled water, 80 ml; at 30 C for 1.5-2 hr, then reduced at 40-45 C in three pyrogallol solutions as follows: 1-2 sec in 1% pyrogallol in 55% alcohol; 3-4 sec in a 0.67% solution in 33% alcohol, and 5-7 sec in a 0.5% solution in 25% alcohol. Gold toning is optional; dehydration, clearing and covering, routine. The technic shows particularly the perisomatic fibers, boutons en passant and boutons termineaux. Fibers in nerve tracts may be visible but lightly stained; cell nuclei may be dark, but the cytoplasm remains pale.  相似文献   

8.
TO determine the amount of K2Cr2O7 required to produce optimal Giemsa type staining, six 1 g amounts (corrected for dye content) of zinc methylene blue were oxidized with graded quantities of K2Cr2O7 to produce 4, 8, 12, 16, 20 and 24% conversion of methylene blue to azure B. These were heated with a blank control 15 minutes at 100 C in 60-65 ml 0.4 N HCI. cooled, and adjusted to 50 ml to give 20 mg original dye/ml. Aliquots were then diluted to 1% and stains were made by the “Wet Giemsa” technic (Lillie and Donaldson 1979) using 6 ml 1% polychrome methylene blue, 4 ml 1% cosin (corrected for dye content), 2 ml 0.1 M pH 6.3 phosphate buffer, 5 ml acetone, and 23 ml distilled water. The main is added last and methanol fixed blood films are stained immediately for 20-40 min.

For methylene blue supplied by MCB 12-H-29, optimal stains were obtained with preparations containing 20 and 24% conversion of methylene blue to azure B. With methylene blue supplied by Aldrich (080787), 16% conversion of methylene blue to azure B was optimal. Eosinates prepared from a low azure B/methylene blue preparation selected in this way give good stains when used as a Wright stain in 0.3% methanol solution. However, when the 600 mg eosinate solution in glycerol methanol is supplemented with 160 mg of the same azure B/methylene blue chloride the mixture fails to perform well. The HCI precipitation of the chloride apparently produces the zinc methylene blue chloride salt which is poorly soluble in alcohol. It appears necessary to have a zinc-free azure B/methylene blue chloride to supplement the probably zinc-free eosinate used in the Giemsa mixture.  相似文献   

9.
A polychrome stain procedure was developed to demonstrate amastigotes of the protozoan parasite Leishmania braziliensis as well as cytoplasmic and other tissue components in cutaneous lesions of infected animals. The procedure is as follows: stain nuclei for 10 minutes with an iron hematoxylin containing 0.5% hematoxylin and 0.75% ferric ammonium sulfate dissolved in 1:1 0.6 N H2SO4:95% ethanol; rinse 4 minutes in distilled water. Cytoplasmic staining is achieved by exposing tissues for 10 minutes to a solution containing 0.25% Biebrich scarlet, 0.45% orange G, 0.5% phosphomolybdic acid and 0.5% phosphotungstic acid in 1% aqueous acetic acid. These first two solutions are modified from Whipf's polychrome stain. Sections are differentiated for 10 seconds in 50% ethanol, rinsed in water, stained 3 minutes in 0.1% aniline blue WS in saturated aqueous picric acid, rinsed in water and differentiated for 1 minute in absolute ethanol containing 0.05% acetic acid. Mordanting overnight in 6% picric acid in 95% ethanol produced optimal results.

This procedure was applied to sectioned material from experimental animals with various protozoa. Trypanosoma cruzi, Besnoitia Jellisoni, Toxoplasma gondii and especially Leishmania braziliensis were well demonstrated. Combining cytoplasmic dyes and phosphomolybdic-phosphotungstic acids into one solution afforded differential staining of tissues by Biebrich scarlet and orange G; connective tissues were stained by this solution. Substantially improved definition of connective tissues resulted after counterstaining. This procedure differs from the Massou sequence in which connective tissues are first stained by cytoplasmic dyes along with other tissues and then destained prior to specific counter-staining. in comparing dyes structurally related to Biebrich scarlet, it was found that Crocein scarlet MOO, but not Poncenu S, was an acceptable substitute. Sirius supra blue GL and Sirius red FSBA were not useful as replacements for aniline blue WS in this procedure.  相似文献   

10.
Two fluorophores, Solophenyl Flavine 7GFE 500 and Pontamine Fast Scarlet 4B, not heretofore reported upon are described as useful dyes of fungal cell walls, septa and bud scars examined microscopically. The dyes, depending on the filter sets used, yield fluorescently stained material generally in the blue to green and yellow to red wavelengths for Solophenyl Flavine 7GFE 500 and Pontamine Fast Scarlet 4B, respectively. They provide an excellent alternative to the more commonly used fluorophore, Calcofluor White M2R. The two fluorophores, in addition to being used at various spectral wavelengths from mercury arc sources, can be used with laser sources providing 488 nm and 543 nm line wavelengths, common to most scanning confocal microscopes. Unlike Calcofluor, Solophenyl Flavine 7GFE 500 and Pontamine Fast Scarlet 4B do not fade quickly when exposed to selected light wavelengths; however, like Calcofluors they are compatible with living fungal cells.  相似文献   

11.
Human skin was fixed in Davidson's solution (95% alcohol, 35; formalin, 20; glacial acetic acid, 10; and distilled water, 35—parts by volume) and sections prepared through paraffin embedding in the usual manner. Stock stains were: I(BS)—Biebrich scarlet, 1 gm in 100 ml of 50% alcohol to which 0.3 gm of phosphotungstic acid and 5 ml of glacial acetic acid were added—and II(FG)—fast green, 0.5 gm in 85 ml of 50% alcohol to which 0.3 gm of phosphotungstic acid, 0.3 gm of phosphomolybdic acid, and 15 ml of glacial acetic acid were added. Experimental staining solutions were prepared in the following proportions of stock BS to stock FG—1:1, 2:1, 3:1, 1:2 and 1:3. Sections were brought to 50% alcohol and stained for 15, 20, 25 and 30 min in each of the five BS-FG mixtures, rinsed in 50% alcohol, then dehydrated in 70%, 95%, and absolute alcohol, 2 min each; cleared in xylene, and covered in balsam. The 2:1 (optimum proportion) combination of BS with FG, acting for 20 min, yielded 97% sex chromatin-positive nuclei in female material. If sections were stained in stock solution BS for 2 min, they could be differentiated by a 20 min treatment in the mordanting component of stock FG (without dye) to give a one-color stain. Such stains gave about the same percentage of sex chromatin-positive nuclei as those obtained by the regular two-color procedure. These modifications are simpler, more rapid, and yield results comparable to previously employed techniques.  相似文献   

12.
Human skin was fixed in Davidson's solution (95% alcohol, 35; formalin, 20; glacial acetic acid, 10; and distilled water, 35—parts by volume) and sections prepared through paraffin embedding in the usual manner. Stock stains were: I(BS)—Biebrich scarlet, 1 gm in 100 ml of 50% alcohol to which 0.3 gm of phosphotungstic acid and 5 ml of glacial acetic acid were added—and II(FG)—fast green, 0.5 gm in 85 ml of 50% alcohol to which 0.3 gm of phosphotungstic acid, 0.3 gm of phosphomolybdic acid, and 15 ml of glacial acetic acid were added. Experimental staining solutions were prepared in the following proportions of stock BS to stock FG—1:1, 2:1, 3:1, 1:2 and 1:3. Sections were brought to 50% alcohol and stained for 15, 20, 25 and 30 min in each of the five BS-FG mixtures, rinsed in 50% alcohol, then dehydrated in 70%, 95%, and absolute alcohol, 2 min each; cleared in xylene, and covered in balsam. The 2:1 (optimum proportion) combination of BS with FG, acting for 20 min, yielded 97% sex chromatin-positive nuclei in female material. If sections were stained in stock solution BS for 2 min, they could be differentiated by a 20 min treatment in the mordanting component of stock FG (without dye) to give a one-color stain. Such stains gave about the same percentage of sex chromatin-positive nuclei as those obtained by the regular two-color procedure. These modifications are simpler, more rapid, and yield results comparable to previously employed techniques.  相似文献   

13.
Immerse pieces of brain tissue 4 wk in solutions A and B, mixed just before use: A. K2Cr2O7, 1 gm; HgCl2, 1 gm; boiling distilled water, 85 ml. Boil A for 15 min, cool to 2 C and add: B. K2CrO4, 0.8 gm; Na2WO4, 0.5 gm; distilled water, 20 ml. Rinse in water and immerse 24 hr in LiOH, 0.5 gm; KNO3, 15 gm; distilled water, 100 ml. Wash 24 hr in several changes of 0.2% acetic acid and then for 2 hr in tap water. Dehydrate and embed in celloidin. Process a 60 μ section through 70 and 95% ethanol, a 3:1 mixture of absolute ethanol and chloroform, and toluene. Immerse it for 5 min in a solution containing methyl benzoate, 25 ml; benzyl alcohol, 100 ml; chloroform, 75 ml. Orient the section on a chemically clean slide and let air-dry 5-10 min. Process through toluene, 3:1 ethanol-chloroform and 95% ethanol. Place the section for 5-60 min at 60 C in a solution made up of: Luxol fast blue G (Matheson, Coleman and Bell), 1 gm; 95% ethanol, 1000 ml; 10% acetic acid, 5 ml. Hydrate to water and immerse in 0.05% Li2CO3 for 3-4 min. Differentiate in 70% ethanol and place in water. Immerse for 5-15 min in a mixture of two solutions: A. cresylechtviolet (Otto C. Watzka, Montreal), 2 gm; 1 M acetic acid, 185 ml; B. 1 M sodium acetate, 15 ml; distilled water, 400 ml; absolute ethanol, 200 ml. Dehydrate to 3:1 ethanol-chloroform. Clear in toluene and apply a coverslip. The technique produces fast Golgi-Cox impregnated neurons against a background of counterstained myelinated fibers. Patterns of the myelinated fibers can be used to localize impregnated neurons.  相似文献   

14.
The appearance of silver impregnation of the Golgi apparatus can be enhanced by the use of nitrocellulose as an embedding medium. Fixation of 1.5 mm thick pieces of fresh tissue for 8 hr in: glycine, 1.7 gm; 15% formalin, 100 ml; HNO3, conc., 0.5 ml, at pH 2.6 followed by rinsing in water, 4 hr in 1.5% AgNO3, another rinse, and 2 hr reduction in 1.5% hydroquinone in 15% formalin. This staining procedure yields consistently good results for rat, rabbit, and human tissues. Low-viscosity nitrocellulose embedding is done by infiltrating at 56 C in 7% nitrocellulose for 0.5 hr, 15% for 4 hr, and 27% for 1 hr. The nitrocellulose is hardened 2 hr in chloroform, after which, sections as thin as 5 μ can be cut on a sliding microtome. Gold toning and counterstaining can be done with the tissue affixed to the slide. The Golgi apparatus is stained dark brown to black, and there is better preservation of cellular detail than in tissues processed in paraffin.  相似文献   

15.
Materials are fixed in FPA (formalin, 2; propionic acid, 1; 70% ethanol, 17). Paraffin sections on slides are brought to 50% ethanol and stained as follows: (1) in Bismarck brown Y, a 0.02% solution in 0.1% aqueous phenol, 10-30 min; wash 30 sec in 0.7% acetic acid, and wash in distilled water 20-30 sec; (2) in crystal violet, 1% in 70% ethanol alkalinized with 1 drop of 1 N NaOH per 100 ml, 12-35 min; wash 30-60 sec in tap water to remove excess stain, and rinse 0.5 sec in 70% ethanol; then mordant in I2-KI, 1% each in 70% ethanol, 40 sec, and rinse in 70% ethanol 2-5 sec; (3) in a mixture containing 0.4% acid fuchsin and 0.6% crythrosin B in 70% ethanol about 0.5 sec; rinse in 70% ethanol 5-15 sec to remove excess red; dehydrate in 70%, 95%, and absolute ethanol, 2-3 sec each; (4) in fast green FCF, 0.5% in a mixture of equal parts of methyl cellosolve, absolute ethanol, and clove oil, 5-15 sec; rinse in a mixture of clove oil, 10 ml; absolute ethanol, 100 ml; and methyl cellosolve, 10 ml, 5-7 sec; (5) in orange G, 0.75 gm in a mixture of clove oil, 40 ml; absolute ethanol, 40 ml; and methyl cellosolve, 60 ml, 5-30 sec; rinse clean in a 1:1 mixture of xylene and absolute ethanol, 5-20 sec Complete the clearing in pure xylene, 3 changes, 1.5 min in each, and apply a cover glass with synthetic resin. Slides are agitated in all steps except Bismark brown Y, crystal violet, and the xylenes. Contrast and staining intensity are adjusted by varying staining times in the dye solutions.  相似文献   

16.
Ovaries and ovules of Oryza sativa and Zea mays were collected between 9-30 and 10-30 AM, fixed in formalin-acetic-alcohol, stained in Delafield's hematoxylin for 2-4 hr, dehydrated through graded ethanol, counterstained for 3-4 hr either in light green, orange G or fast green (0.05-0.1%) at the 1:1 alcohol-xylene stage and embedded. A few ovaries were hydrolysed in 1 N HCI for 25 min at 60 C, stained in leuco basic fuchsin for 60-90 min, rinsed 3 times with a mixture of: 10% Na2S2O5, 1; N HC1, 1; and distilled water, 18; washed repeatedly in distilled water, dehydrated through graded ethanol, counter-stained for 3-4 hr either with light or fast green (0.05-0.1%) at the 1:1 alcohol-xylene stage and embedded. Microtome sections were cut, ribbons mounted, dried, paraffin removed with xylene, and mounted in balsam. Uniformly stained preparations resulted and the dilute stains gave vivid color contrasts. Large numbers of ovules and ovaries can be processed in a short time, and reliable percentages of viable embryo sacs in normal, sterile and semisterile plants obtained.  相似文献   

17.
Several dyes, notably ponceau 2R, azofuchsin 3B, nitrazine yellow, and Biebrich scarlet may replace imported “ponceau de xylidin” in the Masson ponceau acid fuchsin mixture. Of these Biebrich scarlet appears to be the best and may be used without acid fuchsin.

A mixture of equal parts of 5% solutions of phosphomolybdic and phosphotungstic acids is much superior to either acid alone and gives adequate mordanting in 1 minute at 22°C.

With the fast green modification, times in plasma and fiber stains can be reduced to 2 minutes each. With anilin blue a 4-minute plasma stain is required. One-minute final differentiation in 1% acetic acid is adequate.

Primary mordanting of formalin material may be accomplished by 5 minutes in saturated aqueous mercuric chloride or 2 minutes in saturated alcoholic picric acid. Three minutes washing in running water is required after these mordants.  相似文献   

18.
Two closely related pseudoisocyanins, N,N'-diethyl-6,6'-dichlorpseudoisocyanin chloride and N, N'-diethylpseudoisocyanin chloride, were tested for their metachromatic staining behavior with oxidized insulin. N,N'-diethyl-6,6-dichlorpseudoisocyanin chloride gave nonspecific metachromasia with collagen, mucus, and mast cells of adult tissues; almost all tissues of rat embryos exhibited nonspecific staining. Nonspecific reactions were rarely observed in adult or fetal tissues with the extremely labile metachromasia of N, N'-diethylpseudoiso-cyanin chloride. When oxidation time and temperatures are carefully controlled, this reagent apears to be highly specific for insulin-containing cells and can be used as a selective stain for beta cells. Paraffin sections of formalin fixed material were oxidized 45 sec at 28-29 C in freshly prepared acidified permanganic (2.5% KMnO4, 1; 5% H2SO4, 1; distilled water, 7—parts by volume), decolorized 30 sec in 5% oxalic acid, and washed 5 min in running tap water. After rinsing in 2 changes of distilled water, sections were stained 20 min in a 36 mg/100 ml aqueous solution of N, N'-diethylpseudoisocyanin chloride. Sections were then washed in running tap water until the albumen adhesive was decolorized, and mounted in Karo syrup diluted with an equal amount of distilled water. The insulin-containing cells are stained light to dark purple; all other tissue components, various shades of red. N, N'-diethylpseudoisocyanin chloride was used as a reference for evaluating the specificity of 5 commonly used empirical methods for demonstrating alpha and beta cells in pancreatic islets. Cells exhibiting pseudo isocyanin metachromasia were stained selectively by aldehyde-fuchsin, Heidenhain's azan, and chrome-hematoxylin. Aldehyde-Iuchsin was the only empirical stain tested which gave results comparable to pseudoisocyanin for clarity and definition of beta cells. After oxidation in acidified permanganate, azocarmine and phosphotungstic acid-hematoxylin differentially stained alpha cells; cells demonstrated by these two methods did not exhibit pseudoisocyanin metachromasia. This histochemical procedure can precede empirical methods which require preliminary oxidation in acidified permanganate or it can follow empirical methods which do not extract the insulin nor alter its intramolecular disulfide bonds.  相似文献   

19.
Fresh, unprocessed bone is ground to sections 75-100 μ thick, stained in an aqueous solution composed of fast green FCF, 0.1 gm; orange G, 2.0 gm; distilled water, 100.0 ml; and adjusted to pH 6.65, then in a mixture of 1 part alcoholic solution of 0.25% celestine blue B and 9 parts of alcoholic solution of 0.1% basic fuchsin. Surface stain is removed by grinding sections to 50 μ and washing them in 1% invert soap (Zephiran) to remove adherent debris. (Commercial detergents and alkaline soaps may interfere with chromophore groups of the dyes.) Wash in tap water; rinse in distilled water and differentiate in 1% acetic alcohol. Dehydrate in ascending alcohols, clear in xylene and mount permanently in a neutral, synthetic resin. Active osteoid seams stain dark to light green; resting osteoid seams, red to bright orange red; transitional osteoid seams, geenish-yellow, orange red to red; older, partly mineralized matrix, orange; new, partly mineralized matrix, red; osteocyte nuclei, red; osteoblasts and osteoclasts, greenish-blue to dark purple nuclei and green or light green cytoplasm. Hyper-trophic and differentiating cartilage cells are stained light pink and dark red respectively. The staining reactions are consistent; the solutions are stable.  相似文献   

20.
Fresh tissue slices were fixed in 5% formalin containing 0.9% NaCl for 10-20 min and frozen sections therefrom floated for 3 hr at 37°C on an incubating mixture made as follows. Sodium pyrophosphate (Na4P2O7-12H2O), 1.088 gm was dissolved in 20-30 ml of distilled water and to this was added ferric chloride (FeCl3-6H2O), 0.61 gm dissolved in 10-15 ml of water. The precipitate was just dissolved by cautiously adding 5-10% aqueous Na2CO3 solution and the pH adjusted to 7.2 with 1N HCl. The volume was made up to 100 ml and 0.9 gm of NaCl added. Before use, 1 ml of 10% Mg(NO3) was added. After incubation, sections were washed 10-15 min in 0.9% NaCl, then mounted on glass slides and air-dried. When dry, the slides were immersed in 0.9% NaCl containing 0.2-0.5% ammonium sulfide for 2-3 min, then dehydrated rapidly through graded alcohols, cleared, and covered in balsam. Sites of pyrophosphatase activity stained in various shades of green. Acid pyrophosphatase also was histochemically demonstrated by the same principle, excepting that the substrate solution was adjusted to pH 3.7-4.0 with acetate buffer. The pattern of distribution of pyrophosphatase and glycerophosphatase was almost identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号