首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kidney blood flow is highly regulated by a combination of myogenic autoregulation, multiple neurohormonal systems and the tubuloglomerular feedback system, the later of which specifically relates tubular reabsorption to the filtered load. Oxygen and substrate requirements of the kidney are dictated by both supply of oxygen and substrates and metabolic demands of the kidney. The tubuloglomerular feedback system utilizes mediators which are intimately linked to cellular metabolism, ATP and adenosine. This system based upon communication transfer between the macular densa and the afferent arteriole stabilizes kidney function and is not static but temporally adapts or resets to new external physiologic conditions. Such temporal adaptation occurs via modulators such as nitric oxide (NO), primarily derived from NOS-1, angiotensin II and COX-2 products. These hormonal influences also exert capacities to modulate cellular demands for oxygen, particularly NO which decreases oxygen consumption via multiple mechanisms. The several mechanisms whereby NO and other hormonal systems and transporter activity can regulate and produce changes in kidney metabolic demands are discussed. Modulators which influence temporal adaptation and resetting of TGF are also significant contributors to the regulation of cellular oxygen consumption in the kidney. These systems may act in concert to preserve the coordination of filtered load and tubular reabsorption and the metabolic demands of kidney function, thereby determining the ischemic threshold for kidney function.  相似文献   

3.
4.
5.
6.
Effects of angiotensin on proximal tubular reabsorption   总被引:1,自引:0,他引:1  
Effects of angiotensin II on rat, rabbit, and bovine proximal tubular reabsorption have been demonstrated with a variety of techniques, including in vivo microperfusion, free-flow micropuncture of surface and juxtamedullary nephrons, perfusion of isolated tubules in vitro, and cell culture. Blockade of endogenous angiotensin production in vivo with converting-enzyme inhibition, or of receptors with saralasin, consistently inhibits proximal reabsorption of fluid in both superficial and juxtamedullary proximal tubules. Angiotensin effects on the proximal tubule are not neurally mediated, for they persist in denervated kidneys and are seen in nerve-free isolated tubules. Physiological concentrations of angiotensin (10(-11)-10(-9) M) stimulate electroneutral sodium transport from the basolateral membrane, whereas pharmacological doses (10(-7) M and above) inhibit reabsorption. The stimulatory effects appear to be receptor mediated. In addition to these direct effects of angiotensin on the proximal tubule epithelium, endogenous angiotensin may also alter peritubular physical forces to further enhance proximal reabsorption. These effects of angiotensin may represent an important homeostatic mechanism during states of extracellular fluid volume depletion.  相似文献   

7.
8.
9.
Heme oxygenase (HO) catalyzes the degradation of heme to form iron, biliverdin, and carbon monoxide (CO). The vascular actions of CO include direct vasodilation of vascular smooth muscle and indirect vasoconstriction through inhibition of nitric oxide synthase (NOS). This study was performed to examine the effects in the kidney of inhibition of heme oxygenase alone or combined with NOS inhibition. Chromium mesoporphyrin (CrMP; 45 μmol/kg ip), a photostable HO inhibitor, was given to control rats and N(G)-nitro-l-arginine methyl ester (l-NAME)-treated hypertensive rats (50 mg·kg?1·day?1), 12 h, 4 days). In control animals, CrMP decreased CO levels, renal HO-1 levels, urine volume, and sodium excretion, but had no effect on arterial pressure, renal blood flow (RBF), plasma renin activity (PRA), or glomerular filtration rate (GFR). In l-NAME-treated hypertensive rats, CrMP decreased endogenous CO and renal HO-1 levels and had no effect on arterial pressure, RBF, or GFR but decreased sodium and water excretion in a similar manner to control animals. An increase in PRA was observed in untreated rats but not in l-NAME-infused rats, indicating that this effect is associated with an absent NO system. The results suggest that inhibition of HO promotes water and sodium excretion by a direct tubular action that is independent of renal hemodynamics or the NO system.  相似文献   

10.
11.
12.
13.
14.
15.
Low level direct renal nerve stimulation increases renal tubular sodium reabsorption in the absence of changes in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. Blockade of this response with phenoxybenzamine (or guanethidine) supports the interpretation that it is mediated by direct adrenergic innervation of the renal tubule.  相似文献   

16.
17.
18.
19.
20.
The entire mammalian nephron, including the juxtaglomerular apparatus, receives an exclusive noradrenergic innervation. Renal tubular alpha 1 adrenoceptors mediate the alterations in tubular segmental sodium, chloride, and water reabsorption that occur in response to direct or reflex changes in efferent renal sympathetic nerve activity. Specific tubular segments so identified are the proximal convoluted tubule, the loop of Henle (thick ascending limb), and the collecting duct. Alterations in efferent renal sympathetic nerve activity represent an important physiological contribution to the overall role of the kidney in the regulation of external sodium balance in conscious animals during both dietary sodium restriction and acute and chronic increases in total-body sodium. Progressively more intense activation of the renal nerves recruits a series of adrenergically mediated influences on renin secretion that are additive, ranging from subtle (modulation of nonneural mechanisms without directly causing renin secretion) to marked (renal vasoconstriction, antinatriuresis, high renin secretion rates). Juxtaglomerular granular cell beta 1 adrenoceptors mediate renin secretion responses to frequencies of renal nerve stimulation that do not cause renal vasoconstriction; at higher frequencies of renal nerve stimulation where renal vasoconstriction is present, renal vascular alpha 1 adrenoceptors mediate a portion of the renin secretion response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号