首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the mechanisms underlying the observed dynamics of complex biological systems requires the statistical assessment and comparison of multiple alternative models. Although this has traditionally been done using maximum likelihood-based methods such as Akaike''s Information Criterion (AIC), Bayesian methods have gained in popularity because they provide more informative output in the form of posterior probability distributions. However, comparison between multiple models in a Bayesian framework is made difficult by the computational cost of numerical integration over large parameter spaces. A new, efficient method for the computation of posterior probabilities has recently been proposed and applied to complex problems from the physical sciences. Here we demonstrate how nested sampling can be used for inference and model comparison in biological sciences. We present a reanalysis of data from experimental infection of mice with Salmonella enterica showing the distribution of bacteria in liver cells. In addition to confirming the main finding of the original analysis, which relied on AIC, our approach provides: (a) integration across the parameter space, (b) estimation of the posterior parameter distributions (with visualisations of parameter correlations), and (c) estimation of the posterior predictive distributions for goodness-of-fit assessments of the models. The goodness-of-fit results suggest that alternative mechanistic models and a relaxation of the quasi-stationary assumption should be considered.  相似文献   

2.
Non‐native tree species (NNT) are used in European forestry for many purposes including their growth performance, valuable timber, and resistance to drought and pest or pathogen damage. Yet, cultivating NNT may pose risks to biodiversity, ecosystem functioning, and the provisioning of ecosystem services, and several NNT have been classified as invasive in Europe. Typically, such classifications are based on risk assessments, which do not adequately consider site‐specific variations in impacts of the NNT or the extent of affected areas. Here, we present a new methodological framework that facilitates both mitigating risks associated with NNT and taking advantage of their ecosystem services. The framework is based on a stratified assessment of risks posed by NNT which distinguishes between different sites and considers effectiveness of available management strategies to control negative effects. The method can be applied to NNT that already occur in a given area or those NNT that may establish in future. The framework consists of eight steps and is partly based on existing knowledge. If adequate site‐specific knowledge on NNT does not yet exist, new evidence on the risks should be obtained, for example, by collecting and analyzing monitoring data or modeling the potential distribution of NNT. However, limitations remain in the application of this method, and we propose several policy and management recommendations which are required to improve the responsible use of NNT.  相似文献   

3.
Ronald A. Fisher, who is the founder of maximum likelihood estimation (ML estimation), criticized the Bayes estimation of using a uniform prior distribution, because we can create estimates arbitrarily if we use Bayes estimation by changing the transformation used before the analysis. Thus, the Bayes estimates lack the scientific objectivity, especially when the amount of data is small. However, we can use the Bayes estimates as an approximation to the objective ML estimates if we use an appropriate transformation that makes the posterior distribution close to a normal distribution. One-to-one correspondence exists between a uniform prior distribution under a transformed scale and a non-uniform prior distribution under the original scale. For this reason, the Bayes estimation of ML estimates is essentially identical to the estimation using Jeffreys prior.  相似文献   

4.
MOTIVATION: Bayesian estimation of phylogeny is based on the posterior probability distribution of trees. Currently, the only numerical method that can effectively approximate posterior probabilities of trees is Markov chain Monte Carlo (MCMC). Standard implementations of MCMC can be prone to entrapment in local optima. Metropolis coupled MCMC [(MC)(3)], a variant of MCMC, allows multiple peaks in the landscape of trees to be more readily explored, but at the cost of increased execution time. RESULTS: This paper presents a parallel algorithm for (MC)(3). The proposed parallel algorithm retains the ability to explore multiple peaks in the posterior distribution of trees while maintaining a fast execution time. The algorithm has been implemented using two popular parallel programming models: message passing and shared memory. Performance results indicate nearly linear speed improvement in both programming models for small and large data sets.  相似文献   

5.
Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters   总被引:2,自引:0,他引:2  
Accurate and fast estimation of genetic parameters that underlie quantitative traits using mixed linear models with additive and dominance effects is of great importance in both natural and breeding populations. Here, we propose a new fast adaptive Markov chain Monte Carlo (MCMC) sampling algorithm for the estimation of genetic parameters in the linear mixed model with several random effects. In the learning phase of our algorithm, we use the hybrid Gibbs sampler to learn the covariance structure of the variance components. In the second phase of the algorithm, we use this covariance structure to formulate an effective proposal distribution for a Metropolis-Hastings algorithm, which uses a likelihood function in which the random effects have been integrated out. Compared with the hybrid Gibbs sampler, the new algorithm had better mixing properties and was approximately twice as fast to run. Our new algorithm was able to detect different modes in the posterior distribution. In addition, the posterior mode estimates from the adaptive MCMC method were close to the REML (residual maximum likelihood) estimates. Moreover, our exponential prior for inverse variance components was vague and enabled the estimated mode of the posterior variance to be practically zero, which was in agreement with the support from the likelihood (in the case of no dominance). The method performance is illustrated using simulated data sets with replicates and field data in barley.  相似文献   

6.
Random-effects models for serial observations with binary response   总被引:9,自引:0,他引:9  
R Stiratelli  N Laird  J H Ware 《Biometrics》1984,40(4):961-971
This paper presents a general mixed model for the analysis of serial dichotomous responses provided by a panel of study participants. Each subject's serial responses are assumed to arise from a logistic model, but with regression coefficients that vary between subjects. The logistic regression parameters are assumed to be normally distributed in the population. Inference is based upon maximum likelihood estimation of fixed effects and variance components, and empirical Bayes estimation of random effects. Exact solutions are analytically and computationally infeasible, but an approximation based on the mode of the posterior distribution of the random parameters is proposed, and is implemented by means of the EM algorithm. This approximate method is compared with a simpler two-step method proposed by Korn and Whittemore (1979, Biometrics 35, 795-804), using data from a panel study of asthmatics originally described in that paper. One advantage of the estimation strategy described here is the ability to use all of the data, including that from subjects with insufficient data to permit fitting of a separate logistic regression model, as required by the Korn and Whittemore method. However, the new method is computationally intensive.  相似文献   

7.
Ando  Tomohiro 《Biometrika》2007,94(2):443-458
The problem of evaluating the goodness of the predictive distributionsof hierarchical Bayesian and empirical Bayes models is investigated.A Bayesian predictive information criterion is proposed as anestimator of the posterior mean of the expected loglikelihoodof the predictive distribution when the specified family ofprobability distributions does not contain the true distribution.The proposed criterion is developed by correcting the asymptoticbias of the posterior mean of the loglikelihood as an estimatorof its expected loglikelihood. In the evaluation of hierarchicalBayesian models with random effects, regardless of our parametricfocus, the proposed criterion considers the bias correctionof the posterior mean of the marginal loglikelihood becauseit requires a consistent parameter estimator. The use of thebootstrap in model evaluation is also discussed.  相似文献   

8.
Evolutionary biology is a study of life's history on Earth. In researching this history, biologists are often interested in attempting to reconstruct phenotypes for the long extinct ancestors of living species. Various methods have been developed to do this on a phylogeny from the data for extant taxa. In the present article, I introduce a new approach for ancestral character estimation for discretely valued traits. This approach is based on the threshold model from evolutionary quantitative genetics. Under the threshold model, the value exhibited by an individual or species for a discrete character is determined by an underlying, unobserved continuous trait called “liability.” In this new method for ancestral state reconstruction, I use Bayesian Markov chain Monte Carlo (MCMC) to sample the liabilities of ancestral and tip species, and the relative positions of two or more thresholds, from their joint posterior probability distribution. Using data simulated under the model, I find that the method has very good performance in ancestral character estimation. Use of the threshold model for ancestral state reconstruction relies on a priori specification of the order of the discrete character states along the liability axis. I test the use of a Bayesian MCMC information theoretic criterion based approach to choose among different hypothesized orderings for the discrete character. Finally, I apply the method to the evolution of feeding mode in centrarchid fishes.  相似文献   

9.
On flexible finite polygenic models for multiple-trait evaluation   总被引:1,自引:0,他引:1  
Bink MC 《Genetical research》2002,80(3):245-256
Finite polygenic models (FPM) might be an alternative to the infinitesimal model (TIM) for the genetic evaluation of pedigreed multiple-generation populations for multiple quantitative traits. I present a general flexible Bayesian method that includes the number of genes in the FPM as an additional random variable. Markov-chain Monte Carlo techniques such as Gibbs sampling and the reversible jump sampler are used for implementation. Sampling of genotypes of all genes in the FPM is done via the use of segregation indicators. A broad range of FPM models, some combined with TIM, are empirically tested for the estimation of variance components and the number of genes in the FPM. Four simulation scenarios were studied, including genetic models with 5 or 50 additive independent diallelic genes affecting the traits, and random selection or selection on one of the traits was performed. The results in this study were based on ten replicates per simulation scenario. In the case of random selection, uniform priors on additive gene effects led to posterior mean estimates of genetic variance that were positively correlated with the number of genes fitted in the FPM. In the case of trait selection, assuming normal priors on gene effects also led to genetic variance estimates for the selected trait that were negatively correlated with the number of genes in the FPM. This negative correlation was not observed for the unselected trait. Treating the number of genes in the FPM as random revealed a positive correlation between prior and posterior mean estimates of this number, but the prior hardly affected the posterior estimates of genetic variance. Posterior inferences about the number of genes should be considered to be indicative where trait selection seems to improve the power of distinguishing between TIM and FPM. Based on the results of this study, I suggest not replacing TIM by the FPM, but combining TIM and FPM with the number of genes treated as random, to facilitate a highly flexible and thereby robust method for variance component estimation in pedigreed populations. Further study is required to explore the full potential of these models under different genetic model assumptions.  相似文献   

10.
In Plasmodium-infected mosquitoes, oocysts are preferentially located at the posterior half of the posterior midgut. Because mosquitoes rest vertically after feeding, the effect of gravity on the ingested blood has been proposed as the cause of such a biased distribution. In this paper, we examined the oocyst distribution on the midguts of mosquitoes that were continuously rotated to nullify the effect of gravity and found that the typical pattern of oocyst distribution did not change. Invasion of the midgut epithelium by ookinetes was similarly found to be biased toward the posterior part of the posterior midgut. We examined whether the distribution of oocysts depends on the distribution of vesicular ATPase (V-ATPase)-overexpressing cells that Plasmodium ookinetes preferentially use to cross the midgut epithelium. An antiserum raised against recombinant Aedes aegypti V-ATPase B subunit indicated that the majority of V-ATPase-overexpressing cells in Ae. aegypti and Anopheles gambiae are localized at the posterior part of the posterior midgut. We propose that the typical distribution of oocysts on the mosquito midgut is attributable to the presence and the spatial distribution of the V-ATPase-overexpressing cells in the midgut epithelium.  相似文献   

11.
Yi N  Xu S 《Genetics》2000,156(1):411-422
Variance component analysis of quantitative trait loci (QTL) is an important strategy of genetic mapping for complex traits in humans. The method is robust because it can handle an arbitrary number of alleles with arbitrary modes of gene actions. The variance component method is usually implemented using the proportion of alleles with identity-by-descent (IBD) shared by relatives. As a result, information about marker linkage phases in the parents is not required. The method has been studied extensively under either the maximum-likelihood framework or the sib-pair regression paradigm. However, virtually all investigations are limited to normally distributed traits under a single QTL model. In this study, we develop a Bayes method to map multiple QTL. We also extend the Bayesian mapping procedure to identify QTL responsible for the variation of complex binary diseases in humans under a threshold model. The method can also treat the number of QTL as a parameter and infer its posterior distribution. We use the reversible jump Markov chain Monte Carlo method to infer the posterior distributions of parameters of interest. The Bayesian mapping procedure ends with an estimation of the joint posterior distribution of the number of QTL and the locations and variances of the identified QTL. Utilities of the method are demonstrated using a simulated population consisting of multiple full-sib families.  相似文献   

12.
When the underlying responses are discrete, the interval estimation of the intraclass correlation derived from the normality assumption is not strictly valid for use. This paper focuses the interval estimation on the intraclass correlation under the negative binomial distribution, that has been commonly applied in epidemiological or consumer purchasing behaviour studies. This paper develops two simple asymptotic interval estimation procedures in closed forms for the intraclass correlation. To evaluate the performance of these procedures, a Monte Carlo simulation is carried out for a variety of situations. An example about consumer purchasing behaviors is also included to illustrate the use of the two proposed interval estimation procedures.  相似文献   

13.
No fallacies in the formulation of the paternity index   总被引:5,自引:3,他引:2       下载免费PDF全文
In a recent publication, Li and Chakravarti claim to have shown that the paternity index is not a likelihood ratio. They present a method of estimating the prior probability of paternity from a sample of previous court cases on the basis of exclusions and nonexclusions. They propose calculating the posterior probability on the basis of this estimated prior and the test result expressed as exclusion/nonexclusion. Their claim is wrong--the paternity index is a likelihood-ratio, that is, the ratio of the likelihood of the observation conditional on the two mutually exclusive hypotheses. Their proposed method of estimating the prior has been long known, has been applied to several samples, and is inferior (in terms of variance of the estimate) to maximum likelihood estimation based on all the phenotypic information available. Their proposed "new method" of calculating a posterior probability is based on the use of a less informative likelihood ratio 1/(1-PE) instead of Gürtler's fully informative paternity index X/Y (Acta Med Leg Soc Liege 9:83-93, 1956), but is otherwise identical to the Bayesian approach originally introduced by Essen-M?ller in 1938.  相似文献   

14.
To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH) technique is often used for detecting DNA copy number variants (CNVs). Various methods have been developed for gaining CNVs information based on aCGH data. However, most of these methods make use of the log-intensity ratios in aCGH data without taking advantage of other information such as the DNA probe (e.g., biomarker) positions/distances contained in the data. Motivated by the specific features of aCGH data, we developed a novel method that takes into account the estimation of a change point or locus of the CNV in aCGH data with its associated biomarker position on the chromosome using a compound Poisson process. We used a Bayesian approach to derive the posterior probability for the estimation of the CNV locus. To detect loci of multiple CNVs in the data, a sliding window process combined with our derived Bayesian posterior probability was proposed. To evaluate the performance of the method in the estimation of the CNV locus, we first performed simulation studies. Finally, we applied our approach to real data from aCGH experiments, demonstrating its applicability.  相似文献   

15.
Calibration is a critical step in every molecular clock analysis but it has been the least considered. Bayesian approaches to divergence time estimation make it possible to incorporate the uncertainty in the degree to which fossil evidence approximates the true time of divergence. We explored the impact of different approaches in expressing this relationship, using arthropod phylogeny as an example for which we established novel calibrations. We demonstrate that the parameters distinguishing calibration densities have a major impact upon the prior and posterior of the divergence times, and it is critically important that users evaluate the joint prior distribution of divergence times used by their dating programmes. We illustrate a procedure for deriving calibration densities in Bayesian divergence dating through the use of soft maximum constraints.  相似文献   

16.
The K function is a summary of spatial dependence in spatial point processes. In practice one observes a realization of the spatial point process, called a spatial point pattern. Although the K function of a spatial point process is typically unknown, several estimators of the process K function have been put forth. These estimators, however, are based upon empirical averages; the complicated distributional properties of the estimators unfortunately complicates interval estimation. In this paper, we propose a Bayesian inferential framework, allowing inference for the K function of the spatial point process (including interval estimation). Of particular interest is the unique use of the posterior predictive distribution to (efficiently) enable such inferences. To demonstrate our technique, the well known Swedish pine sapling data (Strand, 1972) is analyzed, including a discussion on evaluating model fit.  相似文献   

17.
Long non‐coding RNAs (lncRNAs) have been illustrated to function as important regulators in carcinogenesis and cancer progression. However, the roles of lncRNA NNT‐AS1 in gastric cancer remain unclear. In the present study, we investigate the biological role of NNT‐AS1 in gastric cancer tumorigenesis. Results revealed that NNT‐AS1 expression level was significantly up‐regulated in GC tissue and cell lines compared with adjacent normal tissue and normal cell lines. The ectopic overexpression of NNT‐AS1 indicated the poor prognosis of GC patients. In vitro experiments validated that NNT‐AS1 knockdown suppressed the proliferation and invasion ability and induced the GC cell cycle progression arrest at G0/G1 phase. In vivo xenograft assay, NNT‐AS1 silencing decreased the tumour growth of GC cells. Bioinformatics online program predicted that miR‐424 targeted the 3′‐UTR of NNT‐AS1. Luciferase reporter assay, RNA‐immunoprecipitation (RIP) and RNA pull‐down assay validated the molecular binding within NNT‐AS1 and miR‐424, therefore jointly forming the RNA‐induced silencing complex (RISC). Moreover, E2F1 was verified to act as the target gene of NNT‐AS1/miR‐424, indicating the NNT‐AS1/miR‐424/E2F1 axis. In conclusion, our study indicates that NNT‐AS1 sponges miR‐424/E2F1 to facilitate GC tumorigenesis and cycle progress, revealing the oncogenic role of NNT‐AS1 for GC.  相似文献   

18.
Estimation of divergence times is usually done using either the fossil record or sequence data from modern species. We provide an integrated analysis of palaeontological and molecular data to give estimates of primate divergence times that utilize both sources of information. The number of preserved primate species discovered in the fossil record, along with their geological age distribution, is combined with the number of extant primate species to provide initial estimates of the primate and anthropoid divergence times. This is done by using a stochastic forwards-modeling approach where speciation and fossil preservation and discovery are simulated forward in time. We use the posterior distribution from the fossil analysis as a prior distribution on node ages in a molecular analysis. Sequence data from two genomic regions (CFTR on human chromosome 7 and the CYP7A1 region on chromosome 8) from 15 primate species are used with the birth-death model implemented in mcmctree in PAML to infer the posterior distribution of the ages of 14 nodes in the primate tree. We find that these age estimates are older than previously reported dates for all but one of these nodes. To perform the inference, a new approximate Bayesian computation (ABC) algorithm is introduced, where the structure of the model can be exploited in an ABC-within-Gibbs algorithm to provide a more efficient analysis.  相似文献   

19.
IntroductionKinetic compartmental analysis is frequently used to compute physiologically relevant quantitative values from time series of images. In this paper, a new approach based on Bayesian analysis to obtain information about these parameters is presented and validated.Materials and methodsThe closed-form of the posterior distribution of kinetic parameters is derived with a hierarchical prior to model the standard deviation of normally distributed noise. Markov chain Monte Carlo methods are used for numerical estimation of the posterior distribution. Computer simulations of the kinetics of F18-fluorodeoxyglucose (FDG) are used to demonstrate drawing statistical inferences about kinetic parameters and to validate the theory and implementation. Additionally, point estimates of kinetic parameters and covariance of those estimates are determined using the classical non-linear least squares approach.Results and discussionPosteriors obtained using methods proposed in this work are accurate as no significant deviation from the expected shape of the posterior was found (one-sided P > 0.08). It is demonstrated that the results obtained by the standard non-linear least-square methods fail to provide accurate estimation of uncertainty for the same data set (P < 0.0001).ConclusionsThe results of this work validate new methods for a computer simulations of FDG kinetics. Results show that in situations where the classical approach fails in accurate estimation of uncertainty, Bayesian estimation provides an accurate information about the uncertainties in the parameters. Although a particular example of FDG kinetics was used in the paper, the methods can be extended for different pharmaceuticals and imaging modalities.  相似文献   

20.
Detection-nondetection data are often used to investigate species range dynamics using Bayesian occupancy models which rely on the use of Markov chain Monte Carlo (MCMC) methods to sample from the posterior distribution of the parameters of the model. In this article we develop two Variational Bayes (VB) approximations to the posterior distribution of the parameters of a single-season site occupancy model which uses logistic link functions to model the probability of species occurrence at sites and of species detection probabilities. This task is accomplished through the development of iterative algorithms that do not use MCMC methods. Simulations and small practical examples demonstrate the effectiveness of the proposed technique. We specifically show that (under certain circumstances) the variational distributions can provide accurate approximations to the true posterior distributions of the parameters of the model when the number of visits per site (K) are as low as three and that the accuracy of the approximations improves as K increases. We also show that the methodology can be used to obtain the posterior distribution of the predictive distribution of the proportion of sites occupied (PAO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号