首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The central zone of the rat lens epithelium, extending half way from the centre to the periphery of a whole mount preparation, normally has less than 1% of the cells in the cell cycle at any given time. Mechanical wounding initiates a burst of proliferation in the central zone. DNA synthesis begins 14 hr after wounding followed by mitosis 10 hr later. When [3H]TdR was applied at 2 hr prior to S phase, some moderately heavy and some light labelling was observed after the onset of S phase. When [3H]TdR was applied 5 hr before S phase (9 hr after wounding), all the cells were lightly labelled. Only small amounts of the label were available to these cells 5 hr after application. It is significant that there was labelling in this group because it indicates the persistence of relatively small intracellular pools of [3H]TdR for several hours after the initial 'pulse' labelling of cells. Determinations of the duration of S phase were based on the assumption that pulse labelling may be affected by the persistence of the pools of [3H]TdR and consequent light labelling of the cells.  相似文献   

2.
Using radioautographic smear preparations of thymocytes and mesenteric lymph node (MLN) cells labelled with three different tritiated pyrimidine deoxyribonucleosides, the incorporation of DNA precursors was studied separately on large lymphocytes and small lymphocytes. Radioautographic reaction due to generally tritiated deoxycytidine ( [G-3H]CdR) labelling in vivo in large lymphocytes was more intense than that in small lymphocytes. When mice were sacrificed 6 hr after the administration of tritiated thymidine ( [3H]TdR), small lymphocytes were labelled more heavily than large lymphocytes. However, labelling intensity with [3H]TdR in large lymphocytes was greatly enhanced by the administration of 5-fluoro-deoxyuridine, whereas in small lymphocytes labelling intensity was only fairly enhanced by the same treatment. When cells were incubated in vitro with 5-tritium labelled deoxycytidine [( 5-3H]CdR) for 10 min, there was no significant difference in labelling intensities between large and small lymphocytes. In the case of [G-3H]CdR incorporation, the labelling intensity in large lymphocytes was found to be significantly stronger than that in small lymphocytes. Large as well as small lymphocytes incorporated [3H]TdR very well in vitro. However, addition of 5 X 0 X 10(-5) M of non-radioactive CdR to the medium greatly decreased the incorporation of [3H]TdR by large lymphocytes, whereas the effect of non-radioactive CdR in small lymphocytes was not so marked as that in large lymphocytes. Furthermore, the [3H]TdR-labelling percentages were decreased at the same rate by the addition of non-radioactive CdR in both large and small lymphocytes. These results indicate that large lymphocytes and a proportion of small lymphocytes have a strong tendency to convert CdR to thymidine mono-phosphate, which is utilized for DNA synthesis, whereas this ability is relatively weak in the rest of small lymphocytes. Thus, it is probably that this metabolic ability changes during the transition of the large lymphocyte to the small lymphocyte.  相似文献   

3.
In the partially synchronized cell system of the hamster cheek pouch epithelium, the inhibitory effect of a bolus injection of methotrexate (Mtx) (2 g/m2, injected at 1200 hr) was analysed by means of both autoradiography and flow cytometry (FCM) in a 21-hr experiment. For autoradiography [3H]TdR and [3H]UdR were used as tracers for salvage and de novo pathways of thymidylate (TMP) synthesis, respectively. For FCM no tracers were injected. The autoradiographic studies demonstrated an active TdR salvage pathway for DNA synthesis, not affected by the impaired de novo TMP synthesis. The blocked de novo TMP synthesis was partially released 7 hr after Mtx injection, but it had not totally recovered at the end of the experiment. The decrease in the fraction of S-phase cells detected about 10 hr after Mtx injection by autoradiographic labelling with [3H]TdR and by FCM was found to be caused by a decrease in the number of cells entering S phase. However, Mtx did not influence the salvage TMP synthesis rate of cells entering S phase.  相似文献   

4.
The influence of pulse labelling with 50 microCi tritiated thymidine ( [3H]TdR) (2 microCi/g) on epidermal cell-cycle distribution in mice was investigated. Animals were injected intraperitoneally with the radioactive tracer or with saline at 08.00 hours, and groups of animals were sacrificed at intervals during the following 32 hr. Epidermal basal cells were isolated from the back skin of the animals and prepared for DNA flow cytometry, and the proportions of cells in the S and G2 phases of the cell cycle were estimated from the obtained DNA frequency distributions. The proportions of mitoses among basal cells were determined in histological sections from the same animals, as were the numbers of [3H]TdR-labelled cells per microscopic field by means of autoradiography. The results showed that the [3H]TdR activity did not affect the pattern of circadian rhythms in the proportions of cells in S, G2 and M phase during the first 32 hr after the injection. The number of labelled cells per vision field was approximately doubled between 8 and 12 hr after tracer injection, indicating an unperturbed cell-cycle progression of the labelled cohort. In agreement with previous reports, an increase in the mitotic index was seen during the first 2 hr. These data are in agreement with the assumption that 50 microCi [3H]TdR given as a pulse does not perturb cell-cycle progression in mouse epidermis in a way that invalidates percentage labelled mitosis (PLM) and double-labelling experiments.  相似文献   

5.
In the partially synchronized cell system of the hamster cheek pouch epithelium, the inhibitory effect of a bolus injection of methotrexate (Mtx) (2 g/m2, injected at 1200 hr) was analysed by means of both autoradiography and flow cytometry (FCM) in a 21-hr experiment. For autoradiography [3H]TdR and [3H]UdR were used as tracers for salvage and de nouo pathways of thymidylate (TMP) synthesis, respectively. For FCM no tracers were injected. the autoradiographic studies demonstrated an active TdR salvage pathway for DNA synthesis, not affected by the impaired de novo TMP synthesis. the blocked de novo TMP synthesis was partially released 7 hr after Mtx injection, but it had not totally recovered at the end of the experiment. the decrease in the fraction of S-phase cells detected about 10 hr after Mtx injection by autoradiographic labelling with [3H]TdR and by FCM was found to be caused by a decrease in the number of cells entering S phase. However, Mtx did not influence the salvage TMP synthesis rate of cells entering S phase.)  相似文献   

6.
The influence of pulse labelling with 50 °Ci tritiated thymidine ([3H]TdR) (2 μCi/g) on epidermal cell-cycle distribution in mice was investigated. Animals were injected intraperitoneally with the radioactive tracer or with saline at 08.00 hours, and groups of animals were sacrificed at intervals during the following 32 hr. Epidermal basal cells were isolated from the back skin of the animals and prepared for DNA flow cytometry, and the proportions of cells in the S and G2 phases of the cell cycle were estimated from the obtained DNA frequency distributions. the proportions of mitoses among basal cells were determined in histological sections from the same animals, as were the numbers of [3H]TdR-labelled cells per microscopic field by means of autoradiography. The results showed that the [3H]TdR activity did not affect the pattern of circadian rhythms in the proportions of cells in S, G2 and M phase during the first 32 hr after the injection. the number of labelled cells per vision field was approximately doubled between 8 and 12 hr after tracer injection, indicating an unperturbed cell-cycle progression of the labelled cohort. In agreement with previous reports, an increase in the mitotic index was seen during the first 2 hr. These data are in agreement with the assumption that 50 °Ci [3H]TdR given as a pulse does not perturb cell-cycle progression in mouse epidermis in a way that invalidates percentage labelled mitosis (PLM) and double-labelling experiments.  相似文献   

7.
In Snell dwarf mice, the influence of short-term treatment with human growth hormone (hGH) or thyroxine on the proliferative and sulphation activity of the proximal tibial growth plate was studied. By autoradiographic methods, the [3H]methylthymidine incorporation after a single injection was measured, after 2 hr incorporation time. The labelling index was calculated and the number of labelled mitoses was counted. In addition, the distribution of the labelled nuclei over the proliferating and degenerating zones was determined by continuous labelling for 25 and 73 hr. In untreated dwarf mice after [3H]-methylthymidine administration, the number of labelled nuclei in the growth plate is low. Labelling occurs, as expected, mainly in the cells of the proliferative zones. The number of labelled nuclei in control dwarf mice was similar after 25 and 73 hr continuous labelling. This suggests that many cells are in a resting G0 or prolonged G1 phase. Both hGH and T4 treatment induce a significant increase of the number of labelled nuclei per growth plate and of the number of mitoses. Since hormonal treatment induces a small number of mitoses after 2 hr incorporation of the label, the minimal G2 phase of the cell cycle is less than 2 hr. In addition, treatment with hGH and T4 stimulates chondrocytes in the zone of proliferative and hypertrophic cells to actively incorporate [35S]-sulphate.  相似文献   

8.
The cell population kinetics of the epidermis were studied in 4-month-old pigs. Mitotic figures were confined to the basal cell (L1) and the first suprabasal cell layer (L2). The mitotic index (MI) was 0.17 +/- 0.04% for L1 and 0.08 +/- 0.03% for L2. Labelled nuclei were distributed throughout the viable epidermis, the majority (79.1 +/- 1.1%) were in L1 with 19.5 +/- 1.2% in L2. The labelling indices (LI) in layers L1 and L2 were 7.1 +/- 0.4% and 3.4 +/- 0.1%, respectively. After labelling with two injections of tritiated thymidine [3H]TdR separated by 90 min, the LI increased to 8.2 +/- 0.3% in L1 and to 4.0 +/- 0.2% in L2. This increased labelling confirmed that cell proliferation occurs in both layers, L1 and L2, of the epidermis. The cell production rate (K) in L1 and L2 had an upper limit of 10.7 +/- 1.0 and 6.2 +/- 1.8 cells per 1000 cells per hour respectively. The cell flow rate per hour (cell flux), into and out of the DNA synthesis phase (S), and the duration of DNA synthesis were determined from double-labelling studies with [3H]TdR and [14C]TdR. The cell flux into and out of S was identical and was calculated as 0.6 +/- 0.1%/hr (L1) and 0.5 +/- 0.1%/hr (L2). Values for tS varied from 8 to 10 hr. The cell turnover times (tT) were in the range 89-129 hr and 180-261 hr for L1 and L2, respectively. Log normal curves were fitted to the fraction labelled mitoses data for L1 and L2. Values for tS for cells in L1 and L2 were 9.8 hr and 11.9 hr, respectively. tG2 + 1/2tM was 7.2 hr in L1 and 9.1 hr in L2.  相似文献   

9.
Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine [( 3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12-48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections. A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h. These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44-48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

10.
Cell cycle parameters, as well as the mode of proliferation of glial cells, in four different areas of the brain of the 14-day-old rat (cortex, corpus callosum, nucleus caudatus putamen and commissura anterior) were studied using different cell kinetic methods after injection of [3H]TdR and/or [14C]TdR. The duration of the S phase (tS) was found to be about 10 hr and that of the cycle time (tC) about 20 hr, tG2 is less than 2 hr and t(G2 + M) about 4 hr. These values are valid for glial cells in all four brain areas studied. However, the labelling index (LI) of the glial cells differs by a factor of 3, between 1.8 and 5.4% in the different brain areas. Accordingly, the growth fraction of the glial cell population in the four areas varies between 0.04 and 0.12. Glial cells (astrocytes as well as oligodendrocytes) proliferate according to a steady state system. Furthermore, the proliferation of glial cells is associated with continuous cell loss. After each mitosis about 3% of the daughter cells become pyknotic and die. In addition, a permanent exchange of glial cells occurs between the proliferating and non-proliferating pool.  相似文献   

11.
The colony-forming efficiency of 9L rat gliosarcoma cells was unaffected by treatment with 0.1 μCi/ml of [3H]TdR. However, when cells were treated with 1 or 10 μCi/ml of [3H]Tdr, cell growth was reduced and cell survival decreased. When monolayer 9L cells were treated with 1 μCi/ml of [3H]TdR for up to 72 hr, approximately 5% survived, which is closely related to the percentage of non-cycling cells in this system. When cells were treated with 10 μCi/ml of [3H]TdR for 72 hr, less survival was observed. the additional cell kill observed may be induced by [3H]TdR released from doomed cells into petri dishes during the incubation period of the colony-formation assay.  相似文献   

12.
In a previous study the epidermal cell kinetics of hairless mice were investigated with bivariate DNA/anti-bromodeoxyuridine (BrdU) flow cytometry of isolated basal cells after BrdU pulse labelling. The results confirmed our previous observations of two kinetically distinct sub-populations in the G2 phase. However, the results also showed that almost all BrdU-positive cells had left S phase 6-12 h after pulse labelling, contradicting our previous assumption of a distinct, slowly cycling, major sub-population in S phase. The latter study was based on an experiment combining continuous tritiated thymidine [( 3H]TdR) labelling and cell sorting. The purpose of the present study was to use a mathematical model to analyse epidermal cell kinetics by simulating bivariate DNA/BrdU data in order to get more details about the kinetic organization and cell cycle parameter values. We also wanted to re-evaluate our assumption of slowly cycling cells in S phase. The mathematical model shows a good fit to the experimental BrdU data initiated either at 08.00 hours or 20.00 hours. Simultaneously, it was also possible to obtain a good fit to our previous continuous labelling data without including a sub-population of slowly cycling cells in S phase. This was achieved by improving the way in which the continuous [3H]TdR labelling was simulated. The presence of two distinct subpopulations in G2 phase was confirmed and a similar kinetic organization with rapidly and slowly cycling cells in G1 phase is suggested. The sizes of the slowly cycling fractions in G1 and G2 showed the same distinct circadian dependency. The model analysis indicates that a small fraction of BrdU labelled cells (3-5%) was arrested in G2 phase due to BrdU toxicity. This is insignificant compared with the total number of labelled cells and has a negligible effect on the average cell cycle data. However, it comprises 1/3 to 1/2 of the BrdU positive G2 cells after the pulse labelled cells have been distributed among the cell cycle compartments.  相似文献   

13.
Abstract. We have studied carcinoma NT, a transplantable mouse adenocarcinoma of spontaneous origin. Cells labelled with [3H]thymidine ([3H]TdR) were restricted to a narrow zone around the periphery of this tumour and were also found in rings up to 50 μ m wide, around isolated blood vessels in the central necrotic area. Labelling with [3H]deoxyuridine ([3H]UdR), another DNA synthesis precursor, produced a very different pattern. The labelled zone around the periphery was much wider than with [3H]TdR, and [3H]UdR labelled cells were found up to 110 μ m from isolated vessels. [3H]iododeoxyuridine ([3H]IUdR) gave the same pattern of labelling as [3H]UdR. In the heavily labelled zone, within 1 mm of the tumour periphery, the labelling index (LI) was 51% after [3H]UdR or [3H]IUdR injection, and only 36% with [3H]TdR.
The data show that at least half of the DNA-synthesizing cells in this tumour did not incorporate [3H]TdR. Previous workers reported cell loss factors for carcinoma NT of 60% calculated from [3H]TdR labelling data and 30% from the rate of loss of [125I]UdR. The present work suggests that calculations based on [125I]UdR data are more likely to be accurate for carcinoma NT than those using [3H]TdR data.  相似文献   

14.
A long-lived thymidine pool in epithelial stem cells   总被引:2,自引:0,他引:2  
Abstract. The labelling index (LI) of the individual basal cell positions of the anterior column of mouse tongue filiform papillae was assessed with time after an injection of [3H]TdR at 12.00 hours (the minimum point in the circadian LI rhythm). An initial doubling of the LI in the stem cell zone due to cell division was followed by a second rise of 14–16% 16 hr after injection and this occurred even in the presence of vincristine. Although the uptake of [3H]TdR and the initial LI doubling were largely prevented by a preceding injection of hydroxyurea, the 14–16% LI rise was still observed. The possible explanations are discussed, the favoured one being that an average of one of the six or seven cells (the stem cell) in each stem cell zone can store [3H]TdR in a long-lived precursor pool for at least 16 hr before being utilized for DNA synthesis. This complements previously published work which suggested that one cell in each stem cell zone may selectively segregate DNA at mitosis.  相似文献   

15.
The simultaneous immunohistochemical detection of bromodeoxyuridine (BrdU) and [3H]-thymidine ([3H]TdR), by conventional autoradiography, was performed on the mouse small intestine (ileum). Proliferation was studied under normal conditions as well as after 3 Gy of gamma-rays. The BrdU method in conjunction with [3H]TdR autoradiography appears to be reliable and useful for the study of cell kinetics especially in disturbed states, on condition that [3H]TdR is delivered to the animals before BrdU. It has been found that cells in the crypt are delayed by irradiation in their progression through the cell cycle predominantly in late S phase. The cells at the bottom of the crypt are more affected than the more differentiated but proliferating cells in the upper part of the crypt.  相似文献   

16.
The proportion of haematopoietic stem cells (CFU-s) engaged in DNA synthesis was determined by means of the [3H]-thymidine [( 3H]TdR) suicide technique during recovery of bone marrow from the damage caused by a sublethal total body irradiation. In contrast with previous reports the [3H]TdR suicide rate was not permanently increased. It was observed that CFU-s passed through S phase in synchronous waves, following a dose of irradiation of 1.5 Gy. After a dose of 2.6 Gy, there was only one initial wave of increased CFU-s sensitivity to the action of [3H]TdR. Following the depression occurring 26 hr after the irradiation with 2.6 Gy, the proportion of CFU-s killed by the [3H]TdR was permanently increased until 5-6 days after irradiation. Thereafter large differences in the [3H]TdR suicide data were observed among individual mice. Evidence was obtained that individual mice, which had been irradiated by a dose of 2.6 Gy 8-9 days before, had identical values of the CFU-s [3H]TdR suicide rate in the bone marrow from different bones of the lower extremities. The recurrence of the synchronous waves in CFU-s passage through the cell cycle was recorded when the CFU-s population regenerated to only about 10% of its normal value. These waves were obviously not related to a particular time of the day and, consequently, they did not represent the circadian rhythm. It is concluded that the synchronous waves in which CFU-s proliferation occurred reflected the action of the control mechanism on CFU-s proliferation. This mechanism should be endowed with an important systemic component besides locally operating factors.  相似文献   

17.
Abstract. In a previous study the epidermal cell kinetics of hairless mice were investigated with bivariate DNA/anti-bromodeoxyuridine (BrdU) flow cytometry of isolated basal cells after BrdU pulse labelling. The results confirmed our previous observations of two kinetically distinct sub-populations in the G2 phase. However, the results also showed that almost all BrdU-positive cells had left S phase 6–12 h after pulse labelling, contradicting our previous assumption of a distinct, slowly cycling, major sub-population in S phase. The latter study was based on an experiment combining continuous tritiated thymidine ([3H]TdR) labelling and cell sorting. The purpose of the present study was to use a mathematical model to analyse epidermal cell kinetics by simulating bivariate DNA/BrdU data in order to get more details about the kinetic organization and cell cycle parameter values. We also wanted to re-evaluate our assumption of slowly cycling cells in S phase. The mathematical model shows a good fit to the experimental BrdU data initiated either at 08.00 hours or 20.00 hours. Simultaneously, it was also possible to obtain a good fit to our previous continuous labelling data without including a sub-population of slowly cycling cells in S phase. This was achieved by improving the way in which the continuous [3H]TdR labelling was simulated. The presence of two distinct sub-populations in G2 phase was confirmed and a similar kinetic organization with rapidly and slowly cycling cells in G1 phase is suggested. The sizes of the slowly cycling fractions in G1 and G2 showed the same distinct circadian dependency. The model analysis indicates that a small fraction of BrdU labelled cells (3–5%) was arrested in G2 phase due to BrdU toxicity. This is insignificant compared with the total number of labelled cells and has a negligible effect on the average cell cycle data. However, it comprises 1/3 to 1/2 of the BrdU positive G2 cells after the pulse labelled cells have been distributed among the cell cycle compartments.  相似文献   

18.
In the Chinese hamster, 17 days, i.e. one cycle of the seminiferous epithelium, after two injections of [3H]TdR given 24 hr apart, labelled cells were found among all types of spermatogonia, including stem cells (As). These labelled As spermatogonia derive from one or more self-renewing divisions of the stem cells that originally incorporated [3H]TdR. In the steady state, half of the divisions of the As will be self-renewing and the other half will give rise to Apr spermatogonia that will ultimately become spermatozoa. Theoretically, the labelling index (LI) after 17 days will be similar to that after 1 hr, and in this study twice as high as for the 1-hr interval since only one injection was given. However, experimental values only half that of the theoretical LI were found after 17 days. The following causes for the loss of labelled stem cells are discussed: (1) dilution of label because of division; (2) influx of unlabelled components of false pairs (i.e. newborn stem cells that still have to migrate away, mostly during G1, from their sister cells and are scored as Apr spermatogonia) between 1 hr and 17 days; (3) the existence of long- and short-cycling stem cells, probably combined with preferential differentiation of the short-cycling elements; (4) selective segregation of DNA at stem cell mitosis; and (5) irradiation death of radiosensitive labelled stem cells. As it is not impossible that factors 1, 2, 4 and 5 together account for the total loss of labelled stem cells, LI results do not provide evidence for the existence of separate classes of short- and long-cycling stem cells. The distributions of the LIs of the As, Apr and Aal spermatogonia over the stages of the epithelial cycle at 17 days are similar to those at 1 hr after injection. Hence the regulatory mechanisms that govern the stimulation and inhibition of proliferation of As that give rise to new As for the next epithelial cycle are similar to those of the As that will divide into Apr spermatogonia during the same epithelial cycle. Grain counts revealed that more [3H]TdR is incorporated into As, Apr and Aal spermatogonia that are in S phase during epithelial stages X-IV than in stages V-IX.  相似文献   

19.
Abstract Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine ([3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12–48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections.
A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h.
These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44–48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

20.
The present experiments with [14C]-thymidine (TdR) and [3H]-bromodeoxyuridine (BrdU) using mouse jejunal crypt cells show that the upper limit of the tracer dose of TdR is about 0.5 microgram g body weight-1 and that of BrdU is about 5.0 micrograms g body weight-1. Applying these doses, the proportions of the endogenous DNA synthesis attributed to the exogenous DNA precursor are 2% and 9% respectively. For [3H]-TdR doses commonly used in cell kinetic studies this proportion is only 0.1-1.0%, a negligible quantity that does not influence the endogenous DNA synthesis. The maximum availability time of tracer doses of TdR as well as BrdU is 40 to 60 min, the majority of the precursors being incorporated after 20 min. The availability time is the same for TdR doses exceeding the tracer dose by a factor of 80, whereas it is prolonged in the case of BrdU doses exceeding the tracer dose by a factor of 50. BrdU is suitable to replace radioactively labelled TdR in short term cell kinetic studies, i.e. determination of the labelling index or of the S phase duration by double labelling. However, more studies are needed to elucidate how far BrdU can replace TdR in long term studies as shown by differences between the fraction of labelled mitoses (FLM) curves of a human renal cell carcinoma measured with BrdU and [3H]-TdR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号