首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
CUP-SHAPED COTYLEDON (CUC)1 encodes members of the NAC family. These are functionally redundant genes that are involved in shoot apical meristem (SAM) formation and cotyledon separation during embryogenesis in Arabidopsis. We analyzed transgenic plants overexpressing CUC1 (35S::CUC1). The cotyledons of these transgenic seedlings regularly had two basal lobes, small and round epidermal cells between the sinuses, and adventitious SAMs on the adaxial surface of this region. This suggests that CUC1 promotes adventitious SAM formation by maintaining epidermal cells in an undifferentiated state. In 35S::CUC1 cotyledons, the class I knotted-like homeobox (KNOX) genes, including SHOOT MERISTEMLESS (STM) and BREVIPEDICELLUS (BP), which are involved in SAM formation and/or maintenance, were ectopically expressed before adventitious SAM formation. In stm mutants, ectopic expression of CUC1 could not induce adventitious SAMs, whereas they continued to be observed in bp mutants. These results suggest that STM, but not BP, is necessary for the formation of adventitious SAMs in 35S::CUC1 cotyledons. Furthermore, we examined the relationship between CUC1 and ASYMMETRIC LEAVES (AS)1 and AS2. The as1 and as2 mutations genetically enhance 35S::CUC1 phenotypes even in the absence of STM function. Interestingly, the as1 mutation can partially rescue the mutant vegetative development phenotypes in the cuc1 cuc2 double mutant. Our results suggest that CUC1 positively regulates SAM formation not only through STM but also through an STM-independent pathway that is negatively regulated by AS1 and AS2.  相似文献   

2.
3.
4.
The shoot apical meristem and cotyledons of higher plants are established during embryogenesis in the apex. Redundant CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 as well as SHOOT MERISTEMLESS (STM) of Arabidopsis are required for shoot apical meristem formation and cotyledon separation. To elucidate how the apical region of the embryo is established, we investigated genetic interactions among CUC1, CUC2 and STM, as well as the expression patterns of CUC2 and STM mRNA. Expression of these genes marked the incipient shoot apical meristem as well as the boundaries of cotyledon primordia, consistent with their roles for shoot apical meristem formation and cotyledon separation. Genetic and expression analyses indicate that CUC1 and CUC2 are redundantly required for expression of STM to form the shoot apical meristem, and that STM is required for proper spatial expression of CUC2 to separate cotyledons. A model for pattern formation in the apical region of the Arabidopsis embryo is presented.  相似文献   

5.
In higher plants, molecular mechanisms regulating shoot apical meristem (SAM) formation and organ separation are largely unknown. The CUC1 (CUP-SHAPED COTYLEDON1) and CUC2 are functionally redundant genes that are involved in these processes. We cloned the CUC1 gene by a map-based approach, and found that it encodes a NAC-domain protein highly homologous to CUC2. CUC1 mRNA was detected in the presumptive SAM during embryogenesis, and at the boundaries between floral organ primordia. Surprisingly, overexpression of CUC1 was sufficient to induce adventitious shoots on the adaxial surface of cotyledons. Expression analyses in the overexpressor and in loss-of-function mutants suggest that CUC1 acts upstream of the SHOOT MERISTEMLESS gene.  相似文献   

6.
7.
小麦根愈伤组织胚胎发育过程研究   总被引:4,自引:0,他引:4  
实验通过对6个人工合成小麦品系和对照品种“中国春”种子根愈伤组织分化形成再生植株的过程进行形态和组织切片观察,发现分化初期有2种途径,一种是从愈伤组织先形成不定胚,然后再发育成不定芽和不定根,另一种途径是直接从愈伤组织中分化发育成不定根和不定芽;分化后期不定芽和不定根生长发育有3种类型:一种是不定芽发育先于不定根,一种是不定芽与不定期不定芽和不定根生长发育有种类型:一种是不一定芽发育先于不定根,一  相似文献   

8.
9.
Background and Aims During embryo development in most gymnosperms, the establishment of the shoot apical meristem (SAM) occurs concomitantly with the formation of a crown of cotyledons surrounding the SAM. It has previously been shown that the differentiation of cotyledons in somatic embryos of Picea abies is dependent on polar auxin transport (PAT). In the angiosperm model plant, Arabidopsis thaliana, the establishment of cotyledonary boundaries and the embryonal SAM is dependent on PAT and the expression of the CUP-SHAPED COTYLEDON (CUC) genes, which belong to the large NAC gene family. The aim of this study was to characterize CUC-like genes in a gymnosperm, and to elucidate their expression during SAM and cotyledon differentiation, and in response to PAT. Methods Sixteen Picea glauca NAC sequences were identified in GenBank and deployed to different clades within the NAC gene family using maximum parsimony analysis and Bayesian inference. Motifs conserved between angiosperms and gymnosperms were analysed using the motif discovery tool MEME. Expression profiles during embryo development were produced using quantitative real-time PCR. Protein conservation was analysed by introducing a P. abies CUC orthologue into the A. thaliana cuc1cuc2 double mutant. Key Results Two full-length CUC-like cDNAs denoted PaNAC01 and PaNAC02 were cloned from P. abies. PaNAC01, but not PaNAC02, harbours previously characterized functional motifs in CUC1 and CUC2. The expression profile of PaNAC01 showed that the gene is PAT regulated and associated with SAM differentiation and cotyledon formation. Furthermore, PaNAC01 could functionally substitute for CUC2 in the A. thaliana cuc1cuc2 double mutant. Conclusions The results show that CUC-like genes with distinct signature motifs existed before the separation of angiosperms and gymnosperms approx. 300 million years ago, and suggest a conserved function between PaNAC01 and CUC1/CUC2.  相似文献   

10.
11.
12.
The shoot stem cell niche, contained within the shoot apical meristem (SAM) is maintained in Arabidopsis by the homeodomain protein SHOOT MERISTEMLESS (STM). STM is a mobile protein that traffics cell‐to‐cell, presumably through plasmodesmata. In maize, the STM homolog KNOTTED1 shows clear differences between mRNA and protein localization domains in the SAM. However, the STM mRNA and protein localization domains are not obviously different in Arabidopsis, and the functional relevance of STM mobility is unknown. Using a non‐mobile version of STM (2xNLS‐YFP‐STM), we show that STM mobility is required to suppress axillary meristem formation during embryogenesis, to maintain meristem size, and to precisely specify organ boundaries throughout development. STM and organ boundary genes CUP SHAPED COTYLEDON1 (CUC1), CUC2 and CUC3 regulate each other during embryogenesis to establish the embryonic SAM and to specify cotyledon boundaries, and STM controls CUC expression post‐embryonically at organ boundary domains. We show that organ boundary specification by correct spatial expression of CUC genes requires STM mobility in the meristem. Our data suggest that STM mobility is critical for its normal function in shoot stem cell control.  相似文献   

13.
Critical developmental and gene expression profiles were charted during the formation of shoots from root explants in Arabidopsis tissue culture. Shoot organogenesis is a two-step process involving pre-incubation on an auxin-rich callus induction medium (CIM) during which time root explants acquire competence to form shoots during subsequent incubation on a cytokinin-rich shoot induction medium (SIM). At a histological level, the organization of shoot apical meristems (SAMs) appears to occur during incubation on SIM about the time of shoot commitment, i.e. the transition from hormone-dependent to hormone-independent shoot development. Genes involved in SAM formation, such as SHOOTMERISTEMLESS (STM) and CLAVATA1 (CLV1), were upregulated at about the time of shoot commitment, while WUSCHEL (WUS) was upregulated somewhat earlier. Genes required for STM expression, such as CUP-SHAPED COTYLEDON 1 and 2 (CUC1 and 2) were upregulated prior to shoot commitment. Gene expression patterns were determined for two GFP enhancer trap lines with tissue-specific expression in the SAM, including one line reporting on CUC1 expression. CUC1 was generally expressed in callus tissue during early incubation on SIM, but later CUC1 was expressed more locally in presumptive sites of shoot formation. In contrast, the expression pattern of the enhancer trap lines during zygotic embryogenesis was more localized to the presumptive SAM even in early stages of embryogenesis.  相似文献   

14.
Adventitious organogenesis in plant tissue culture involves de novo formation of apical meristems and should therefore provide important information about the fundamentals of meristem gene networks. We identified novel factors required for neoformation of the shoot apical meristem (SAM) through an analysis of shoot regeneration in root initiation defective3 ( rid3 ) and root growth defective3 ( rgd3 ) temperature-sensitive mutants of Arabidopsis. After induction of callus to regenerate shoots, cell division soon ceased and was then reactivated locally in the surface region, resulting in formation of mounds of dense cells in which adventitious-bud SAMs were eventually constructed. The rgd3 mutation inhibited reactivation of cell division and suppressed expression of CUP-SHAPED COTYLEDON1 ( CUC1 ), CUC2 and SHOOT MERISTEMLESS ( STM ). In contrast, the rid3 mutation caused excess ill-controlled cell division on the callus surface. This was intimately related to enhanced and broadened expression of CUC1 . Positional cloning revealed that the RGD3 and RID3 genes encode BTAF1 (a kind of TATA-binding protein-associated factor) and an uncharacterized WD-40 repeat protein, respectively. In the early stages of shoot regeneration, RGD3 was expressed (as was CUC1 ) in the developing cell mounds, whereas RID3 was expressed outside the cell mounds. When RID3 was over-expressed artificially, the expression levels of CUC1 and STM were significantly reduced. Taken together, these findings show that both negative regulation by RID3 and positive regulation by RGD3 of the CUC–STM pathway participate in proper control of cell division as a prerequisite for SAM neoformation.  相似文献   

15.
In Arabidopsis, adventitious shoots are formed at a high frequency when the calli are induced from roots or hypocotyls cultured on callus induction medium (CIM) and then transferred to shoot induction medium (SIM). The prolonged duration of culture on CIM decreased the frequency of shoot regeneration. However, when 5′-azacitidine (AzaC), an inhibitor of DNA methylation, was added to CIM, the excess culturing on CIM did not decrease the frequency of shoot regeneration. The level of methyl cytosine was up-regulated when hypocotyl explants were cultured on CIM for 2 weeks. We examined the expression patterns of genes that are involved in the formation or regeneration of shoots. Prolonged duration of culture on CIM up-regulated the CUC1, CLV1, CLV3, ESR1, and WUS mRNA levels, and the addition of AzaC to CIM reduced their expression levels. Our results suggest that an increase in DNA methylation decreased the shoot-forming ability and that AzaC can partially recover this ability.  相似文献   

16.
17.
In higher plants, although several genes involved in shoot apical meristem (SAM) formation and organ separation have been isolated, the molecular mechanisms by which they function are largely unknown. CUP-SHAPED COTYLEDON (CUC) 1 and CUC2 are examples of two such genes that encode the NAC domain proteins. This study investigated the molecular basis for their activities. Nuclear localization assays indicated that green fluorescent protein (GFP)-CUC proteins accumulate in the nucleus. Yeast one-hybrid and transient expression assays demonstrated that the C-terminal domain (CTD) of the CUC has transactivation activity. Domain-swapping experiments revealed that the functional specificity of the CUC for promoting adventitious shoot formation resides in the highly conserved NAC domain, not in the CTD in which motifs specific to the CUC subfamily are located. Taken together, these observations suggest that CUC proteins transactivate the target genes involved in SAM formation and organ separation through a specific interaction between the NAC domain and the promoter region of the target genes.  相似文献   

18.
Overall shoot architecture in higher plants is highly dependent on the activity of embryonic and axillary shoot meristems, which are produced from the basal adaxial boundaries of cotyledons and leaves, respectively. In Arabidopsis thaliana, redundant functions of the CUP-SHAPED COTYLEDON genes CUC1, CUC2, and CUC3 regulate embryonic shoot meristem formation and cotyledon boundary specification. Their functional importance and relationship in postembryonic development, however, is poorly understood. Here, we performed extensive analyses of the embryonic and postembryonic functions of the three CUC genes using multiple combinations of newly isolated mutant alleles. We found significant roles of CUC2 and CUC3, but not CUC1, in axillary meristem formation and boundary specification of various postembryonic shoot organs, such as leaves, stems, and pedicels. In embryogenesis, all three genes make significant contributions, although CUC3 appears to possess, at least partially, a distinct function from that of CUC1 and CUC2. The function of CUC3 and CUC2 overlaps that of LATERAL SUPPRESSOR, which was previously shown to be required for axillary meristem formation. Our results reveal that redundant but partially distinct functions of CUC1, CUC2, and CUC3 are responsible for shoot organ boundary and meristem formation throughout the life cycle in Arabidopsis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号