首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ nitrogen removal in phase-separate bioreactor landfill   总被引:1,自引:0,他引:1  
Long Y  Guo QW  Fang CR  Zhu YM  Shen DS 《Bioresource technology》2008,99(13):5352-5361
The feasibility of in situ nitrogen removal in phase-separate bioreactor landfill was investigated. In the experiment, two sets of bioreactor landfill systems, namely conventional two-phase and in situ nitrogen removal bioreactor landfills, were operated. The in situ nitrogen removal bioreactor landfill (NBL) was comprised of a fresh-refuse filled reactor (NBLF), a methanogenic reactor (NBLM) and a nitrifying reactor (NBLN), while the two-phase bioreactor landfill (BL) used as control was comprised of a fresh-refuse filled reactor (BLF) and a methanogenic reactor (BLM). Furthermore, the methanogenic and nitrifying reactors used aged refuse as bulk agents. The results showed that in situ nitrogen removal was viable by phase-separation in the bioreactor landfill. In total 75.8 and 47.5 g of nitrogen were, respectively, removed from the NBL and the BL throughout the experiment. The methanogenic reactor used the aged refuse as medium was highly effective in removing organic matter from the fresh leachate. Furthermore, the aged refuse was also suitable to use as in situ nitrification medium. The degradation of fresh refuse was accelerated by denitrification in the initial stage (namely the initial hydrolyzing stage) despite being delayed by denitrification in a long-term operation.  相似文献   

2.
生物反应器填埋场系统渗滤液的脱氮性能   总被引:1,自引:0,他引:1  
利用填埋场垂直分布的好氧-缺氧-厌氧的独特生态环境,并采用填埋垃圾上层间歇曝气充氧的方式,研究了生物反应器填埋场系统渗滤液的脱N性能.结果表明,填埋垃圾上层间歇曝气充氧,促进了填埋垃圾层硝化细菌和反硝化细菌的生长,且可使反硝化细菌的数量比普通的填埋垃圾层高4~13个数量级,硝化细菌的最大数量可达到109个·g-1;营建了填埋场内硝化、反硝化等脱N反应的生物环境,有利于回流渗滤液含N化合物的去除.试验结束时,其渗滤液NH4+-N和TN浓度分别为186和289 mg·L-1,仅为对照的18%和26%.此外,填埋垃圾上层间歇曝气充氧也有利于填埋垃圾的降解,提高垃圾的稳定化效果.  相似文献   

3.
An anaerobic-aerobic process including a fresh refuse landfill reactor as denitrifying reactor, a well-decomposed refuse reactor as methanogenesis reactor and an aerobic activated sludge reactor as nitrifying reactor was operated by leachate recirculation to remove organic and nitrogen simultaneously. The results indicated that denitrification and methanogenesis were carried out successfully in the fresh refuse and well-decomposed landfill reactors, respectively, while the nitrification of NH(4)(+)-N was performed in the aerobic reactor. The maximum organic removal rate was 1.78 kg COD/m(3)d in the well-decomposed refuse landfill reactor while the NH(4)(+)-N removal rate was 0.18 kg NH(4)(+)-N/m(3)d in the aerobic reactor. The biogas from fresh refuse reactors and well-decomposed refuse landfill reactors were consisted of mainly carbon dioxide and methane, respectively. The volume fraction of N(2) increased with the increase of NO(3)(-)-N concentration and decreased with the drop of NO(3)(-)-N concentration. The denitrifying bacteria mustered mainly in middle layer and the denitrifying bacteria population had a good correlation with NO(3)(-)-N concentration.  相似文献   

4.
Biological nitrogen removal (BNR) based on partial nitrification and denitrification via nitrite is a cost-effective alternate to conventional nitrification and denitrification (via nitrate). The goal of this study was to investigate the microbial ecology, biokinetics, and stability of partial nitrification. Stable long-term partial nitrification resulting in 82.1 +/- 17.2% ammonia oxidation, primarily to nitrite (77.3 +/- 19.5% of the ammonia oxidized) was achieved in a lab-scale bioreactor by operation at a pH, dissolved oxygen and solids retention time of 7.5 +/- 0.1, 1.54 +/- 0.87 mg O(2)/L, and 3.0 days, respectively. Bioreactor ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) populations were most closely related to Nitrosomonas europaea and Nitrobacter spp., respectively. The AOB population fraction varied in the range 61 +/- 45% and was much higher than the NOB fraction, 0.71 +/- 1.1%. Using direct measures of bacterial concentrations in conjunction with independent activity measures and mass balances, the maximum specific growth rate (micro(max)), specific decay (b) and observed biomass yield coefficients (Y(obs)) for AOB were 1.08 +/- 1.03 day(-1), 0.32 +/- 0.34 day(-1), and 0.15 +/- 0.06 mg biomass COD/mg N oxidized, respectively. Corresponding micro(max), b, and Y(obs) values for NOB were 2.6 +/- 2.05 day(-1), 1.7 +/- 1.9 day(-1), and 0.04 +/- 0.02 mg biomass COD/mg N oxidized, respectively. The results of this study demonstrate that the highly selective partial nitrification operating conditions enriched for a narrow diversity of rapidly growing AOB and NOB populations unlike conventional BNR reactors, which host a broader diversity of nitrifying bacteria. Further, direct measures of microbial abundance enabled not only elucidation of mixed community microbial ecology but also estimation of key engineering parameters describing bioreactor systems supporting these communities.  相似文献   

5.
Aged landfill leachates become more refractory over time and difficulty to treat. Recently, aged refuse bioreactors show great promise in treating leachates. In this study, aged refuse bioreactors were constructed to simulate landfill leachate degradation process. The characteristics of leachate were: CODcr, ∼2200 mg/L; BOD5, ∼280 mg/L; total nitrogen, ∼2030 mg/L; and ammonia, ∼1900 mg/L. Results showed that bioreactor could remove leachate pollutants effectively at hydraulic loading of 20 L/m3 d. The removal rate reduced when hydraulic loading doubled or temperature lowered. Effluent recirculation could alleviate the temperature effect. Combining aged refuse and slag biofilters could treat leachate more efficiently. Pyrosequencing analysis indicated that bacteria from Pseudomonas, Lysobacter, Bacillus and δ-proteobacter, Flexibacteraceae were more abundant in the samples. The Shannon index decreased at lower temperature, while evenness and equitability increased with recirculation. We suggest that filter medium and temperature may be the main factors for shaping bacterial community structure.  相似文献   

6.
Nitrifying bacteria, cyanobacteria, and algae are important microorganisms in open pond wastewater treatment systems. Nitrification involving the sequential oxidation of ammonia to nitrite and nitrate, mainly due to autotrophic nitrifying bacteria, is essential to biological nitrogen removal in wastewater and global nitrogen cycling. A continuous flow autotrophic bioreactor was initially designed for nitrifying bacterial growth only. In the presence of cyanobacteria and algae, we monitored both the microbial activity by measuring specific oxygen production rate (SOPR) for microalgae and cyanobacteria and specific oxygen uptake rate (SOUR) for nitrifying bacteria. The growth of cyanobacteria and algae inhibited the maximum nitrification rate by a factor of 4 although the ammonium nitrogen fed to the reactor was almost completely removed. Terminal restriction fragment length polymorphism (T‐RFLP) analysis indicated that the community structures of nitrifying bacteria remained unchanged, containing the dominant Nitrosospira, Nitrospira, and Nitrobacter species. PCR amplification coupled with cloning and sequencing analysis resulted in identifying Chlorella emersonii and an uncultured cyanobacterium as the dominant species in the autotrophic bioreactor. Notwithstanding their fast growth rate and their toxicity to nitrifiers, microalgae and cyanobacteria were more easily lost in effluent than nitrifying bacteria because of their poor settling characteristics. The microorganisms were able to grow together in the bioreactor with constant individual biomass fractions because of the uncoupled solids retention times for algae/cyanobacteria and nitrifiers. The results indicate that compared to conventional wastewater treatment systems, longer solids retention times (e.g., by a factor of 4) should be considered in phototrophic bioreactors for complete nitrification and nitrogen removal. Biotechnol. Bioeng. 2010;107: 1004–1011. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3)d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L(-1). Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosomonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662.  相似文献   

8.
In this study, an aged refuse bioreactor was constructed to remove nitrogen in a mature landfill leachate. The nitrogen removal efficiency and the microbial community composition in the bioreactor were investigated. The results showed that the aged refuse bioreactor removed more than 90 % of total nitrogen in the leachate under the nitrogen loading rate (NLR) of 0.74 g/kg (vs) day, and the total nitrogen removal rate decreased to 62.2 % when NLR increased up to 2.03 g/kg (vs) day. Quantitative polymerase chain reaction results showed that the average cell number of ammonia-oxidizing bacteria in the bioreactor was 1.58?×?108 cells/g, which accounted for 0.41 % of total bacteria. The number of anammox bacteria in the reactor was 1.09?×?108 cells/g, which accounted for 0.27 % of total bacteria. Isotopic 15N tracing experiments showed that nearly 10 % of nitrogen was removed by anammox. High-throughout 454 pyrosequencing revealed that the predominant bacteria in the bioreactor were Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Gemmatimonadetes, including various nitrifiers and denitrifiers with diverse heterotrophic and autotrophic metabolic pathways, supporting that nitrogen was removed through different pathways in this aged refuse bioreactor.  相似文献   

9.
The behavior of dimethyl phthalate (DMP) from municipal solid waste (MSW) in the leachate and refuse of two simulated landfill bioreactors was compared. In one reactor, the leachate was circulated between a landfill and a methanogenic reactor, while the other reactor was operated using direct recirculation of the leachate. The results revealed that the original concentration of DMP in the refuse was approximately 3.3 μg g−1, and the concentration decreased greatly during decomposition of the waste in both reactors. The major loss of DMP from the landfill occurred in an active methanogenic environment in the later period, while the environment was acidic due to a high concentration of chemical oxygen demand (COD), volatile fatty acids (VFA), and contained a large volume of biologically degradable material (BDM) during the early stage. In addition, a high correlation was found between the residual DMP concentrations and the BDM of the refuse in both systems. Circulating the leachate between the landfill and a methanogenic reactor resulted in an increase in the biodegradability of MSW and the degree of waste stabilization. Furthermore, the removal of DMP was enhanced 14% in the landfill that was operated in conjunction with the methanogenic reactor when compared to the landfill in which there was direct leachate recirculation.  相似文献   

10.
With a methanogenic reactor using treated leachate recirculation, the effects of 12 effective microorganisms (EMs), isolated from Hangzhou Tianzhiling landfill, on the degradation of municipal solid waste (MSW) were investigated. The preliminary experiment indicated that the EMs increased the biodegradability of MSW, enhanced 24% of organic mass effluent from the landfill reactor, and shortened methane production period to about 91 days in the bioreactor landfill system. The total gas production volumes for the landfill only with leachate recirculation, the bioreactor landfill system with and without EMs inoculation were 65.7, 620.9 and 518.6 l, respectively, after 105 days operation. The average methane concentration of the gas formed in the bioreactor landfill system was above 70%. These showed that a combination of EMs and methanogenic reactors using treated leachate recirculation might be a good way to increase the degree of MSW stabilization, and enhance the rate and quality of gas production for energy recovery.  相似文献   

11.
Here we provide direct evidence through a series laboratory and field-scale experiments using different age refuse to treat landfill leachate that aged refuse exhibits increased leachate contaminants removal ability with refuse stabilization time addition. Ten-years aged refuse showed best contaminant removal in a laboratory-scale test, removing 70.0% (8340.0-2540.0 mg/L) chemical oxygen demand (COD) and 75.0% (910.0-215.0 mg/L) ammonium-N, as well as removing 61.5-67.0% COD and 50.4-58.1% ammonium-N with variable COD (9948.0-12286.0 mg/L) and NH3-N (780.0-1184.0 mg/L) in a field-scale test, respectively. When the 10-years aged refuse was disinfected by 20% NaClO (wt%), COD, biochemical oxygen demand (BOD5), total nitrogen (TN), and ammonium-N removal showed a dramatic decrease throughout operation time from 84.4-86.2% to 15.2-34.5%, 94.4-99.8% to 26.2-54.4%, 31.2-33.9% to 2.1-10.1%, and 88.5-90.1% to 1.5-14.5%, respectively, suggesting biodegradation is the dominant contaminant removal. Based on this finding, a 3-stages (8 years) age refuse bioreactor (ARB) was constructed to treat leachate and ARB efficiently reduced chemical oxygen demand (COD) from 5478.0-10842.0 mg/L to 261.0-1020 mg/L (87.8-96.2% removal), ammonium-N from 811.4-1582.0 mg/L to 8.5-43.3 mg/L (96.9-99.4%), respectively, in 18 months running. In summary, the present studies suggest that increased leachate contaminant biodegradation ability of aged refuse could be used directly to create an engineering approach to treat leachate with operational and economic advantages.  相似文献   

12.
In this study, the performance of partial nitrification via nitrite and microbial community structure were investigated and compared in two sequencing batch reactors (SBR) with different dissolved oxygen (DO) levels. Both reactors achieved stable partial nitrification with nitrite accumulation ratio of above 95% by using real-time aeration duration control. Compared with high DO (above 3 mg/l on average) SBR, simultaneous nitrification and denitrification (SND) via nitrite was carried out in low DO (0.4–0.8 mg/l) SBR. The average efficiencies of SND in high DO and low DO reactor were 7.7% and 44.9%, and the specific SND rates were 0.20 and 0.83 mg N/(mg MLSS h), respectively. Low DO did not produce sludge with poorer settling properties but attained lower turbidities of the effluent than high DO. Fluorescence in situ hybridization (FISH) analysis in both the reactors showed that ammonia-oxidizing bacteria (AOB) were the dominant nitrifying bacteria and nitrite-oxidizing bacteria (NOB) did not be recovered in spite of exposing nitrifying sludge to high DO. The morphology of the sludge from both two reactors according to scanning electron microscope indicated that small rod-shaped and spherical clusters were dominant, although filamentous bacteria and few long rod-shaped coexisted in the low DO reactor. By selecting properly DO level and adopting process control method is not only of benefit to the achievement of novel biological nitrogen removal technology, but also favorable to sludge population optimization.  相似文献   

13.
This article reports on high-rate nitrification at low pH in biofilm and suspended-biomass reactors by known chemolithotrophic bacteria. In the biofilm reactor, at low pH (4.3 +/- 0.1) and low bulk ammonium concentrations (9.3 +/- 3.3 mg.liter(-1)), a very high nitrification rate of 5.6 g of N oxidized.liter(-1).day(-1) was achieved. The specific nitrification rate (0.55 g of N.g of biomass(-1).day(-1)) was similar to values reported for nitrifying reactors at optimal pH. In the suspended-biomass reactor, the average pH was significantly lower than that in the biofilm reactor (pH 3.8 +/- 0.3), and values as low as pH 3.2 were found. In addition, measurements in the suspended-biomass reactor, using isotope-labeled ammonium (15N), showed that in spite of the very low pH, biomass growth occurred with a yield of 0.1 g of biomass.g of N oxidized(-1). Fluorescence in situ hybridization using existing rRNA-targeted oligonucleotide probes showed that the nitrifying bacteria were from the monophyletic genus Nitrosomonas, suggesting that autotrophic nitrification at low pH is more widespread than previously thought. The results presented in this paper clearly show that autotrophic nitrifying bacteria have the ability to nitrify at a high rate at low pH and in the presence of only a negligible free ammonia concentration, suggesting the presence of an efficient ammonium uptake system and the means to cope with low pH.  相似文献   

14.

Aim

To provide deeper insights into nitrification process within aerobic bioreactors containing supplemental physical support media (hybrid bioreactors).

Methods and Results

Three bench‐scale hybrid bioreactors with different media size and one control bioreactor were operated to assess how biofilm integrity influences microbial community conditions and bioreactor performance. The systems were operated initially at a 5‐day hydraulic retention time (HRT), and all reactors displayed efficient nitrification and chemical oxygen demand (COD) removal (>95%). However, when HRT was reduced to 2·5 days, COD removal rates remained high, but nitrification efficiencies declined in all reactors after 19 days. To explain reduced performance, nitrifying bacterial communities (ammonia‐oxidizing bacteria, AOB; nitrite‐oxidizing bacteria, NOB) were examined in the liquid phase and also on the beads using qPCR, FISH and DGGE. Overall, the presence of the beads in a reactor promoted bacterial abundances and diversity, but as bead size was increased, biofilms with active coupled AOB–NOB activity were less apparent, resulting in incomplete nitrification.

Conclusions

Hybrid bioreactors have potential to sustain effective nitrification at low HRTs, but support media size and configuration type must be optimized to ensure coupled AOB and NOB activity in nitrification.

Significance and Impact of the Study

This study shows that AOB and NOB coupling must be accomplished to minimize nitrification failure.  相似文献   

15.
Li WB  Yao J  Tao PP  Hu H  Fang CR  Shen DS 《Bioresource technology》2011,102(5):4117-4123
The aim of this study was to find a feasible method for the treatment of solid waste generated in the remote rural, where the transportation costs are prohibitive and the resources to construct and maintain conventional treatment plants are not available. This process, consisted of two types of simulated bioreactor landfill (one was recirculated bioreactor landfill, and the other was comprised of fresh and aged refuse reactor) and a soil infiltration system, was operated in ambient temperature for 180 days all together. After treated by the system of fresh and aged refuse reactor, the refuse and leachate reached a strongly degraded and stable state. The remaining leachate can be treated by the soil infiltration system, and 87.5 ± 2.1%, 98.6 ± 1.0% and 95.7 ± 1.7% were achieved by 60 cm soil depths for organic matter, ammonium nitrogen and total nitrogen removal, respectively.  相似文献   

16.
在气升式内循环硝化反应器中研究了渗透压对硝化作用的影响。保持进水氨氮浓度420mg·L-1,将进水渗透压逐渐从4.3×105Pa提高到18.8×105Pa,硝化反应器的氨氮转化率稳定在93%~100%。将进水渗透压进一步提高到19.2×105Pa,氨氮转化率降至69.2%。渗透压对硝化作用的影响具有突发性,临界值在18.8×105~19.2×105Pa之间。受高渗透压胁迫时,活性污泥中硝化细菌的形态趋向单一,个体变小,内膜数量减少,并产生许多不明成分的颗粒状内含物。解除渗透压胁迫后,细胞结构恢复。添加钾离子能够缓解高渗压对硝化作用的影响。高渗透压胁迫以及解除渗透压胁迫可增强污泥硝化活性,比污泥氨氮转化率(污泥以SS计)分别从0.083kg·kg-1·d-1升至0.509kg·kg-1·d-1和2.569kg·kg-1·d-1,同比提高5.1倍和30.0倍。  相似文献   

17.
The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of the reactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity.  相似文献   

18.
The removal of phthalic acid diesters (PAEs) in municipal solid waste (MSW) from two simulated landfill reactors was compared. The results showed that the original concentrations of dimethyl phthalate (DMP), dibutyl phthalate (DBP) and dioctyl phthalate (DOP) in the refuse were 3.3 μg g−1, 18.5 μg g−1 and 0.8 μg g−1, respectively. The concentrations of DMP and DBP in both leachate and refuse decreased greatly during decomposition of the waste in both reactors. The major loss of PAEs from the landfill occurred during an active methanogenic environment with a low concentration of volatile fatty acids (VFA) in the later period. In addition, strong correlations were found between the residual DMP, DBP concentrations and the biologically degradable material (BDM) of the refuse. Finally, PAEs degraded more rapidly in the landfill that was operated in conjunction with the methanogenic reactor when compared to the landfill with direct leachate discharge.  相似文献   

19.
He R  Liu XW  Zhang ZJ  Shen DS 《Bioresource technology》2007,98(13):2526-2532
A sequential upflow anaerobic sludge blanket (UASB) and air-lift loop sludge blanket (ALSB) treatment was introduced into leachate recirculation to remove organic matter and ammonia from leachate in a lab-scale bioreactor landfill. The results showed that the sequential anaerobic-aerobic process might remove above 90% of COD and near to 100% of NH4+ -N from leachate under the optimum organic loading rate (OLR). The total COD removal efficiency was over 98% as the OLR increased to 6.8-7.7 g/l d, but the effluent COD concentration increased to 2.9-4.8 g/l in the UASB reactor, which inhibited the activity of nitrifying bacteria in the subsequent ALSB reactor. The NO3- -N concentration in recycled leachate reached 270 mg/l after treatment by the sequential anaerobic-aerobic process, but the landfill reactor could efficiently denitrify the nitrate. After 56 days operation, the leachate TN and NH4+ -N concentrations decreased to less than 200 mg/l in the bioreactor landfill system. The COD concentration was about 200 mg/l with less than 8 mg/l BOD in recycled leachate at the late stage. In addition, it was found that nitrate in recycled leachate had a negative effect on waste decomposition.  相似文献   

20.
The phylogenetic analysis of dominant microbial populations in 8-year-old refuse samples was done in terms of the whole Bacterial and Archaeal domains. The results indicated that the Bacterial 16S rRNA genes sequences from the aged refuse were largely affiliated with the genus Bacillus, and that more than 60 % of the Archaeal sequences were closely related to the methanogenic archaeon. Some inferentially identified extremophilic organisms, particularly alkaliphiles and/or halophiles, were noted to be present in the aged refuse. Moreover, molecular evidence for the occurrence of ammonia-oxidizing Archaea in aged refuse was reported, which opens up avenues for elucidating its role in ammonia transformation in landfill systems. It seems reasonable to assume that the highly complex environment within the landfill systems may select for microbial populations with versatile metabolism and strong adaptation. These findings underline the need for further biochemical and ecological study of these organisms in aged refuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号