首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Abstract Escherichia coli F-18, a normal human fecal isolate, is an excellent colonizer of the streptomycin-treated mouse large intestine. E. coli F-18Col, a derivative of E. coli F-18 which no longer makes the E. coli F-18 colicin, colonizes the large intestine as well as E. coli F-18 when fed to mice alone but is eliminated when fed together with E. coli F-18. Recently we randomly cloned E. coli F-18 DNA into E. coli F-18Col and let the mouse intestine select the best colonizer. In this way, we isolated a 6.5-kb E. coli F-18 DNA sequence that simultaneously stimulated synthesis of type 1 fimbriae and enhanced E. coli F-18Col colonizing ability. In the present investigation we show that the gene responsible for stimulation of type 1 fimbriae synthesis appears to be leuX , which encodes a tRNA specific for the rare leucine codon UUG. Moreover, it appears that expression of leuX may be regulated by two proteins (22 kDa and 26 kDa) encoded by genes immediately adjacent to leuX .  相似文献   

5.
Codon usage and gene expression.   总被引:36,自引:16,他引:20       下载免费PDF全文
L Holm 《Nucleic acids research》1986,14(7):3075-3087
The hypothesis that codon usage regulates gene expression at the level of translation is tested. Codon usage of Escherichia coli and phage lambda is compared by correspondence analysis, and the basis of this hypothesis is examined by connecting codon and tRNA distributions to polypeptide elongation kinetics. Both approaches indicate that if codon usage was random tRNA limitation would only affect the rarest tRNA species. General discrimination against their cognate codons indicates that polypeptide elongation rates are maintained constant. Thus, differences in expression of E. coli genes are not a consequence of their variable codon usage. The preference of codons recognized by the most abundant tRNAs in E. coli genes encoding abundant proteins is explained by a constraint on the cost of proof-reading.  相似文献   

6.
It has often been suggested that differential usage of codons recognized by rare tRNA species, i.e. "rare codons", represents an evolutionary strategy to modulate gene expression. In particular, regulatory genes are reported to have an extraordinarily high frequency of rare codons. From E. coli we have compiled codon usage data for highly expressed genes, moderately/lowly expressed genes, and regulatory genes. We have identified a clear and general trend in codon usage bias, from the very high bias seen in very highly expressed genes and attributed to selection, to a rather low bias in other genes which seems to be more influenced by mutation than by selection. There is no clear tendency for an increased frequency of rare codons in the regulatory genes, compared to a large group of other moderately/lowly expressed genes with low codon bias. From this, as well as a consideration of evolutionary rates of regulatory genes, and of experimental data on translation rates, we conclude that the pattern of synonymous codon usage in regulatory genes reflects primarily the relaxation of natural selection.  相似文献   

7.
F Daldal 《Gene》1984,28(3):337-342
The nucleotide sequence of a 1.3-kb DNA fragment containing the entire pfkB gene which codes for Pfk-2 of Escherichia coli, a minor phosphofructokinase (Pfk) enzyme, is reported. The Pfk-2 protein subunit is encoded by 924 bp, has 308 amino acids and an Mr of 33 000. Like other weakly expressed E. coli genes the codon usage in the pfkB gene is random; there is no strong bias for the usage of major tRNA isoaccepting species, and the codon preference rules of Grosjean and Fiers [Gene, 18 (1982) 199-209] are followed. This is the first report of the complete gene sequence of a phosphofructokinase.  相似文献   

8.
9.
In a lacZ expression vector (pMC1403Plac), all 64 codons were introduced immediately 3' from the AUG initiation codon. The expression of the second codon variants was measured by immunoprecipitation of the plasmid-coded fusion proteins. A 15-fold difference in expression was found among the codon variants. No distinct correlation could be made with the level of tRNA corresponding to the codons and large differences were observed between synonymous codons that use the same tRNA. Therefore the effect of the second codon is likely to be due to the influence of its composing nucleotides, presumably on the structure of the ribosomal binding site. An analysis of the known sequences of a large number of Escherichia coli genes shows that the use of codons in the second position deviates strongly from the overall codon usage in E. coli. It is proposed that codon selection at the second position is not based on requirements of the gene product (a protein) but is determined by factors governing gene regulation at the initiation step of translation.  相似文献   

10.
11.
The divergence of Salmonella enterica and Escherichia coli is estimated to have occurred approximately 140 million years ago. Despite this evolutionary distance, the genomes of these two species still share extensive synteny and homology. However, there are significant differences between the two species in terms of genes putatively acquired via various horizontal transfer events. Here we report on the composition and distribution across the Salmonella genus of a chromosomal region designated SPI-10 in Salmonella enterica serovar Typhi and located adjacent to tRNA(leuX). We find that across the Salmonella genus the tRNA(leuX) region is a hypervariable hot spot for horizontal gene transfer; different isolates from the same S. enterica serovar can exhibit significant variation in this region. Many P4 phage, plasmid, and transposable element-associated genes are found adjacent to tRNA(leuX) in both Salmonella and E. coli, suggesting that these mobile genetic elements have played a major role in driving the variability of this region.  相似文献   

12.
We describe the cloning and the DNA sequence of an amber suppressor allele of the Escherichia coli leuX (supP) gene. The suppressor allele codes for a tRNA with anticodon CUA, presumably derived by a single base change from a CAA anticodon. The mature coding sequence of the leuX gene is preceded by a putative Pribnow box sequence (TATAAT) and followed by a termination signal. The sequence of the leuX-coded tRNA is compared with the sequences of the four remaining tRNALeu isoacceptors of E. coli and with two tRNALeu species from bacteriophage T4 and T5. The conserved nucleotides in these seven tRNAs recognized by E. coli leucyl-tRNA synthetase are located mainly in the aminoacyl stem and in the D-stem/loop region.  相似文献   

13.
14.
15.
During mRNA translation, synonymous codons for one amino acid are often read by different isoaccepting tRNAs. The theory of selective tRNA charging predicts greatly varying percentages of aminoacylation among isoacceptors in cells starved for their common amino acid. It also predicts major changes in tRNA charging patterns upon concentration changes of single isoacceptors, which suggests a novel type of translational control of gene expression. We therefore tested the theory by measuring with Northern blots the charging of Leu-tRNAs in Escherichia coli under Leu limitation in response to over expression of tRNA(GAG)(Leu). As predicted, the charged level of tRNA(GAG)(Leu) increased and the charged levels of four other Leu isoacceptors decreased or remained unchanged, but the charged level of tRNA(UAG)(Leu) increased unexpectedly. To remove this apparent inconsistency between theory and experiment we postulated a previously unknown common codon for tRNA(GAG)(Leu) and tRNA(UAG)(Leu). Subsequently, we demonstrated that the tRNA(GAG)(Leu) codon CUU is, in fact, read also by tRNA(UAG)(Leu), due to a uridine-5-oxyacetic acid modification.  相似文献   

16.
17.
T Nomura  A Ishihama 《The EMBO journal》1988,7(11):3539-3545
The leuX gene of Escherichia coli codes for a suppressor tRNA and forms a single gene operon containing its own promoter and Q-independent terminator. An analysis of the in vitro processing of leuX precursor revealed that the processing of the 5' end took place in a single-step reaction catalysed by RNase P while the 3' processing involved two successive reactions. The endonucleolytic cleavage activity of the 3' precursor sequence was found to copurify with RNase P. Heat inactivation of thermosensitive RNase P from two independent E. coli mutants abolished the cleavage activity of both the 5' and 3' ends. These results altogether suggest that RNase P carries the activity of 3' end cleavage as well as that of 5' processing. In the presence of Mg2+ alone, the leuX precursor was found to be self-cleaved at a site approximately 13 nt inside from the 5' end of mature tRNA. The self-cleaved precursor tRNA was no longer processed by the 3' endonuclease, suggesting that the 3' endonuclease recognizes a specific conformation of the precursor tRNA for action.  相似文献   

18.
19.
Uropathogenic Escherichia coli (UPEC) contain multiple horizontally acquired pathogenicity-associated islands (PAI) implicated in the pathogenesis of urinary tract infection. In a murine model of cystitis, type 1 pili-mediated bladder epithelial invasion and intracellular proliferation are key events associated with UPEC virulence. In this study, we examined the mechanisms by which a conserved PAI contributes to UPEC pathogenesis in acute cystitis. In the human UPEC strain UTI89, spontaneous excision of PAI II(UTI89) disrupts the adjacent leuX tRNA locus. Loss of wild-type leuX-encoded tRNA(5)(Leu) significantly delayed, but did not eliminate, FimB recombinase-mediated phase variation of type 1 pili. FimX, an additional FimB-like, leuX-independent recombinase, was also found to mediate type 1 pili phase variation. However, whereas FimX activity is relatively slow in vitro, it is rapid in vivo as a non-piliated strain lacking the other fim recombinases rapidly expressed type 1 pili upon experimental infection. Finally, we found that disruption of leuX, but not loss of PAI II(UTI89) genes, reduced bladder epithelial invasion and intracellular proliferation, independent of type 1 piliation. These findings indicate that the predominant mechanism for preservation of PAI II(UTI89) during the establishment of acute cystitis is maintenance of wild-type leuX, and not PAI II(UTI89) gene content.  相似文献   

20.
The temperature-sensitive missense suppressor supH and amber suppressor supP in Escherichia coli are mutations of the serU and leuX genes, respectively. The supH tRNA, tRNA(SerCAA), is expected to recognize UUG codons, which are normally read by tRNA(LeuCAA) and tRNA(LeuUAA), coded for by the leuX gene and the leuZ gene, respectively. We show that supP and supH are incompatible and that strains carrying both supP and a restrictive rpsL allele are temperature sensitive. It is suggested that the temperature sensitivity of both supH and supP strains is caused by deficient reading of UUG codons by tRNA(LeuUAA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号