首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We study the thermodynamic behavior of a model protein with 54 amino acidsthat is designed to form a three-helix bundle in its native state. The model contains three types of amino acids and five to six atoms per amino acid, and has the Ramachandran torsion angles as its only degrees of freedom.The force field is based on hydrogen bonds and effective hydrophobicity forces. We study how the character of the collapse transition depends on the strengths of these forces. For a suitable choice of these two parameters, it is found that the collapse transition is first-order-like and coincides with the folding transition. Also shown is that the corresponding one- and two-helix segments make less stable secondary structure than the three-helix sequence.  相似文献   

2.
A three-dimensional Voronoi tessellation of folded proteins is used to analyze geometrical and topological properties of a set of proteins. To each amino acid is associated a central point surrounded by a Voronoi cell. Voronoi cells describe the packing of the amino acids. Special attention is given to reproduction of the protein surface. Once the Voronoi cells are built, a lot of tools from geometrical analysis can be applied to investigate the protein structure; volume of cells, number of faces per cell, and number of sides per face are the usual signatures of the protein structure. A distinct difference between faces related to primary, secondary, and tertiary structures has been observed. Faces threaded by the main-chain have on average more than six edges, whereas those related to helical packing of the amino acid chain have less than five edges. The faces on the protein surface have on average five edges within 1% error. The average number of faces on the protein surface for a given type of amino acid brings a new point of view in the characterization of the exposition to the solvent and the classification of amino acid as hydrophilic or hydrophobic. It may be a convenient tool for model validation.  相似文献   

3.
The synthesis and processing of the periplasmic components of the leucine transport system of E coli have been studied to determine the role played by transmembrane potential in protein secretion. Both the leucine-isoleucine-valine binding protein and the leucine-specific binding protein are synthesized as precursors with 23 amino acid N-terminal leader sequences. The processing of these precursors is sensitive to the transmembrane potential. Since the amino acid sequence and the crystal structure have been determined for the leucine-isoleucine-valine binding protein, it and the closely related leucine-specific binding protein represent convenient models in which to examine the mechanism of protein secretion in E coli. A model for secretion has been proposed, suggesting a role for transmembrane potential. In this model, the N-terminal amino acid sequence of the precursor is assumed to form a hairpin of two helices. The membrane potential may orient this structure to make it accessible to processing. In addition, the model suggests that a negatively charged, folded domain of the secretory protein may electrophorese toward the trans-positive side of the membrane, thus providing an additional role for the transmembrane potential.  相似文献   

4.
5.
Bastolla U  Porto M  Ortíz AR 《Proteins》2008,71(1):278-299
We adopt a model of inverse folding in which folding stability results from the combination of the hydrophobic effect with local interactions responsible for secondary structure preferences. Site-specific amino acid distributions can be calculated analytically for this model. We determine optimal parameters for the local interactions by fitting the complete inverse folding model to the site-specific amino acid distributions found in the Protein Data Bank. This procedure reduces drastically the influence on the derived parameters of the preference of different secondary structures for buriedness, which affects local interaction parameters determined through the standard approach based on amino acid propensities. The quality of the fit is evaluated through the likelihood of the observed amino acid distributions given the model and the Bayesian Information Criterion, which indicate that the model with optimal local interaction parameters is strongly preferable to the model where local interaction parameters are determined through propensities. The optimal model yields a mean correlation coefficient r = 0.96 between observed and predicted amino acid distributions. The local interaction parameters are then tested in threading experiments, in combination with contact interactions, for their capacity to recognize the native structure and structures similar to the native against unrelated ones. In a challenging test, proteins structurally aligned with the Mammoth algorithm are scored with the effective free energy function. The native structure gets the highest stability score in 100% of the cases, a high recognition rate comparable to that achieved against easier decoys generated by gapless threading. We then examine proteins for which at least one highly similar template exists. In 61% of the cases, the structure with the highest stability score excluding the native belongs to the native fold, compared to 60% if we use local interaction parameters derived from the usual amino acid propensities and 52% if we use only contact interactions. A highly similar structure is present within the five best stability scores in 82%, 81%, and 76% of the cases, for local interactions determined through inverse folding, through propensity, and set to zero, respectively. These results indicate that local interactions improve substantially the performances of contact free energy functions in fold recognition, and that similar structures tend to get high stability scores, although they are often not high enough to discriminate them from unrelated structures. This work highlights the importance to apply more challenging tests, as the recognition of homologous structures, for testing stability scores for protein folding.  相似文献   

6.
Ma BG  Guo JX  Zhang HY 《Proteins》2006,65(2):362-372
Discovering the mechanism of protein folding, in molecular biology, is a great challenge. A key step to this end is to find factors that correlate with protein folding rates. Over the past few years, many empirical parameters, such as contact order, long-range order, total contact distance, secondary structure contents, have been developed to reflect the correlation between folding rates and protein tertiary or secondary structures. However, the correlation between proteins' folding rates and their amino acid compositions has not been explored. In the present work, we examined systematically the correlation between proteins' folding rates and their amino acid compositions for two-state and multistate folders and found that different amino acids contributed differently to the folding progress. The relation between the amino acids' molecular weight and degeneracy and the folding rates was examined, and the role of hydrophobicity in the protein folding process was also inspected. As a consequence, a new indicator called composition index was derived, which takes no structure factors into account and is merely determined by the amino acid composition of a protein. Such an indicator is found to be highly correlated with the protein's folding rate (r > 0.7). From the results of this work, three points of concluding remarks are evident. (1) Two-state folders and multistate folders have different rate-determining amino acids. (2) The main determining information of a protein's folding rate is largely reflected in its amino acid composition. (3) Composition index may be the best predictor for an ab initio protein folding rate prediction directly from protein sequence from the standpoint of practical application.  相似文献   

7.
Favrin G  Irbäck A  Wallin S 《Proteins》2004,54(1):8-12
Z(SPA-1) is an engineered protein that binds to its parent, the three-helix-bundle Z domain of staphylococcal protein A. Uncomplexed Z(SPA-1) shows a reduced helix content and a melting behavior that is less cooperative, compared with the wild-type Z domain. Here we show that the difference in folding behavior between these two sequences can be partly understood in terms of an off-lattice model with 5-6 atoms per amino acid and a minimalistic potential, in which folding is driven by backbone hydrogen bonding and effective hydrophobic attraction.  相似文献   

8.
Huang JT  Tian J 《Proteins》2006,63(3):551-554
The significant correlation between protein folding rates and the sequence-predicted secondary structure suggests that folding rates are largely determined by the amino acid sequence. Here, we present a method for predicting the folding rates of proteins from sequences using the intrinsic properties of amino acids, which does not require any information on secondary structure prediction and structural topology. The contribution of residue to the folding rate is expressed by the residue's Omega value. For a given residue, its Omega depends on the amino acid properties (amino acid rigidity and dislike of amino acid for secondary structures). Our investigation achieves 82% correlation with folding rates determined experimentally for simple, two-state proteins studied until the present, suggesting that the amino acid sequence of a protein is an important determinant of the protein-folding rate and mechanism.  相似文献   

9.
It is currently assumed that the folded structure of a globular protein is controlled in a highly deterministic way by its amino acid sequence. We show here that a very different although not necessarily contrasting viewpoint can be adopted. From statistical treatment of x-ray results, we suggest that the folding pattern essentially follows the collapse to be expected on statistical-mechanical grounds for an ideal chain effectively experiencing self-attraction and comprising identical units, whose conformational properties are obtained as an average over the actual amino acid units. The local details of folding of each protein, obviously dictated byits amino acid sequence, can be regarded as statistical fluctuations. We consider 31 globular fragments belonging to 21 different water-soluble, nonmembrane proteins. By the theory of chain collapse proposed by two of us [G. Allegra and F. Ganazzoli (1985) J. Chem. Phys. 83 , 397], all the average intramolecular distances may be obtained. Accordingly, first an average plot of the mean-square distances between kth neighboring amino acid units is constructed, starting from the observed crystallographic coordinates. Then the plot is basically reproduced with a wormlike chain model undergoing collapse as a result of intramolecular attractive forces. Agreement is especially good for short amino acid sequences (k ? 30), in which case the statistical sampling is more accurate, enabling us to determine the model parameters. The resulting mean-square radius of gyration is also in good agreement with the experimental average, whereas the unperturbed characteristic ratio is roughly consistent with results from conformational calculations by W. L. Mattice [(1977) Macromolecules 10 , 516], based on the rotational isomeric state approach.  相似文献   

10.
从氨基酸序列预测蛋白质折叠速率   总被引:1,自引:0,他引:1  
蛋白质折叠速率预测是当今生物物理学最具挑战性的课题之一.近年来,许多科研工作者开展了大量的研究工作来探索折叠速率的决定因素,许多参数和方法被相继提出.但氨基酸残基间的相互作用、氨基酸的序列顺序等信息对折叠速率的影响从未被提及.采用伪氨基酸组成的方法提取氨基酸的序列顺序信息,利用蒙特卡洛方法选择最佳特征因子,建立线性回归模型进行折叠速率预测.该方法能在不需要任何(显示)结构信息的情况下,直接从蛋白质的氨基酸序列出发对折叠速率进行预测.在Jackknife交互检验方法的验证下,对含有99个蛋白质的数据集,发现折叠速率的预测值与实验值有很好的相关性,相关系数能达到0.81,预测误差仅为2.54.这一精度明显优于其他基于序列的方法,充分说明蛋白质的序列顺序信息是影响蛋白质折叠速率的重要因素.  相似文献   

11.
Optimization of surface exposed charge-charge interactions in the native state has emerged as an effective means to enhance protein stability; but the effect of electrostatic interactions on the kinetics of protein folding is not well understood. To investigate the kinetic consequences of surface charge optimization, we characterized the folding kinetics of a Fyn SH3 domain variant containing five amino acid substitutions that was computationally designed to optimize surface charge-charge interactions. Our results demonstrate that this optimized Fyn SH3 domain is stabilized primarily through an eight-fold acceleration in the folding rate. Analyses of the constituent single amino acid substitutions indicate that the effects of optimization of charge-charge interactions on folding rate are additive. This is in contrast to the trend seen in folded state stability, and suggests that electrostatic interactions are less specific in the transition state compared to the folded state. Simulations of the transition state using a coarse-grained chain model show that native electrostatic contacts are weakly formed, thereby making the transition state conducive to nonspecific, or even nonnative, electrostatic interactions. Because folding from the unfolded state to the folding transition state for small proteins is accompanied by an increase in charge density, nonspecific electrostatic interactions, that is, generic charge density effects can have a significant contribution to the kinetics of protein folding. Thus, the interpretation of the effects of amino acid substitutions at surface charged positions may be complicated and consideration of only native-state interactions may fail to provide an adequate picture.  相似文献   

12.
Biased usage of synonymous codons has been elucidated under the perspective of cellular tRNA abundance for quite a long time now. Taking advantage of publicly available gene expression data for Saccharomyces cerevisiae, a systematic analysis of the codon and amino acid usages in two different coding regions corresponding to the regular (helix and strand) as well as the irregular (coil) protein secondary structures, have been performed. Our analyses suggest that apart from tRNA abundance, mRNA folding stability is another major evolutionary force in shaping the codon and amino acid usage differences between the highly and lowly expressed genes in S. cerevisiae genome and surprisingly it depends on the coding regions corresponding to the secondary structures of the encoded proteins. This is obviously a new paradigm in understanding the codon usage in S. cerevisiae. Differential amino acid usage between highly and lowly expressed genes in the regions coding for the irregular protein secondary structure in S. cerevisiae is expounded by the stability of the mRNA folded structure. Irrespective of the protein secondary structural type, the highly expressed genes always tend to encode cheaper amino acids in order to reduce the overall biosynthetic cost of production of the corresponding protein. This study supports the hypothesis that the tRNA abundance is a consequence of and not a reason for the biased usage of amino acid between highly and lowly expressed genes.  相似文献   

13.
Gordon M. Crippen 《Proteins》1996,26(2):167-171
To calculate the tertiary structure of a protein from its amino acid sequence, the thermodynamic approach requires a potential function of sequence and conformation that has its global minimum at the native conformation for many different proteins. Here we study the behavior of such functions for the simplest model system that still has some of the features of the protein folding problem, namely two-dimensional square lattice chain configurations involving two residue types. First we show that even the given contact potential, which by definition is used to identify the folding sequences and their unique native conformations, cannot always correctly select which sequences will fold to a given structure. Second, we demonstrate that the given contact potential is not always able to favor the native alignment of a native sequence on its own native conformation over other gapped alignments of different folding sequences onto that same conformation. Because of these shortcomings, even in this simple model system in which all conformations and all native sequences are known and determined directly by the given potential, we must reexamine our expectations for empirical potentials used for inverse folding and gapped alignment on more realistic representations of proteins. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The contributions of some amino acid residues in the A, B, G, and H helices to the formation of the folding nucleus and folding intermediate of apomyoglobin were estimated. The effects of point substitutions of Ala for hydrophobic amino acid residues on the structural stability of the native (N) protein and its folding intermediate (I), as well as on the folding/unfolding rates for four mutant apomyoglobin forms, were studied. The equilibrium and kinetic studies of the folding/unfolding rates of these mutant proteins in a wide range of urea concentrations demonstrated that their native state was considerably destabilized as compared with the wild-type protein, whereas the stability of the intermediate state changed moderately. It was shown that the amino acid residues in the A, G, and H helices contributed insignificantly to the stabilization of the apomyoglobin folding nucleus in the rate-limiting I ? N transition, taking place after the formation of the intermediate, whereas the residue of the B helix was of great importance in the formation of the folding nucleus in this transition.  相似文献   

15.
16.
Yan S  Wu G 《Proteins》2012,80(3):764-773
Misgurin is an antimicrobial peptide from the loach, while the hydrophobic-polar (HP) model is a way to study the folding conformations and native states in peptide and protein although several amino acids cannot be classified either hydrophobic or polar. Practically, the HP model requires extremely intensive computations, thus it has yet to be used widely. In this study, we use the two-dimensional HP model to analyze all possible folding conformations and native states of misgurin with conversion of natural amino acids according to the normalized amino acid hydrophobicity index as well as the shortest benchmark HP sequence. The results show that the conversion of misgurin into HP sequence with glycine as hydrophobic amino acid at pH 2 has 1212 folding conformations with the same native state of minimal energy -6; the conversion of glycine as polar amino acid at pH 2 has 13,386 folding conformations with three native states of minimal energy -5; the conversion of glycine as hydrophobic amino acid at pH 7 has 2538 folding conformations with three native states of minimal energy -5; and the conversion of glycine as polar amino acid at pH 7 has 12,852 folding conformations with three native states of minimal energy -4. Those native states can be ranked according to the normalized amino acid hydrophobicity index. The detailed discussions suggest two ways to modify misgurin.  相似文献   

17.
18.
Schug A  Herges T  Wenzel W 《Proteins》2004,57(4):792-798
All-atom protein structure prediction from the amino acid sequence alone remains an important goal of biophysical chemistry. Recent progress in force field development and validation suggests that the PFF01 free-energy force field correctly predicts the native conformation of various helical proteins as the global optimum of its free-energy surface. Reproducible protein structure prediction requires the availability of efficient optimization methods to locate the global minima of such complex potentials. Here we investigate an adapted version of the parallel tempering method as an efficient parallel stochastic optimization method for protein structure prediction. Using this approach we report the reproducible all-atom folding of the three-helix 40 amino acid HIV accessory protein from random conformations to within 2.4 A backbone RMS deviation from the experimental structure with modest computational resources.  相似文献   

19.
Local hydrophobic collapse of the polypeptide chain and transient long-range interactions in unfolded states of apomyoglobin appear to occur in regions of the amino acid sequence which, upon folding, bury an above-average area of hydrophobic surface. To explore the role of these interactions in protein folding, we prepared and characterized apomyoglobins with compensating point mutations designed to change the average buried surface area in local regions of the sequence, while conserving as much as possible the constitution of the hydrophobic core. The behavior of the mutants in quench-flow experiments to determine the folding pathway was exactly as predicted by the changes in the buried surface area parameter calculated from the amino acid sequence. In addition, spin label experiments with acid-unfolded mutant apomyoglobin showed that the transient long-range contacts that occur in the wild-type protein are abolished in the mutant, while new contacts are observed between areas that now have above-average buried surface area. We conclude that specific groupings of amino acid side-chains, which can be predicted from the sequence, are responsible for early hydrophobic interactions in the first phase of folding in apomyoglobin, and that these early interactions determine the subsequent course of the folding process.  相似文献   

20.
Prediction of the three-dimensional structure of human growth hormone   总被引:2,自引:0,他引:2  
F E Cohen  I D Kuntz 《Proteins》1987,2(2):162-166
In recent years, the protein-folding problem has attracted the attention of molecular biologists. Efforts have focused on developing heuristic and energy-based algorithms to predict the three-dimensional structure of a protein from its amino acid sequence. We have applied a series of heuristic algorithms to the sequence of human growth hormone. A family of five structures which are generically right-handed fourfold alpha-helical bundles are found from an investigation of approximately 10(8) structures. A plausible receptor binding site is suggested. Independent crystallographic analysis confirms some aspects of these predictions. These methods only deal with the "core" structure, and conformations of many residues are not defined. Further work is required to identify a unique set of coordinates and to clarify the topological alternative available to alpha-helical proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号