首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei G  Mousseau N  Derreumaux P 《Proteins》2004,56(3):464-474
The determination of the folding mechanisms of proteins is critical to understand the topological change that can propagate Alzheimer and Creutzfeld-Jakobs diseases, among others. The computational community has paid considerable attention to this problem; however, the associated time scale, typically on the order of milliseconds or more, represents a formidable challenge. Ab initio protein folding from long molecular dynamics simulations or ensemble dynamics is not feasible with ordinary computing facilities and new techniques must be introduced. Here we present a detailed study of the folding of a 16-residue beta-hairpin, described by a generic energy model and using the activation-relaxation technique. From a total of 90 trajectories at 300 K, three folding pathways emerge. All involve a simultaneous optimization of the complete hydrophobic and hydrogen bonding interactions. The first two pathways follow closely those observed by previous theoretical studies (folding starting at the turn or by interactions between the termini). The third pathway, never observed by previous all-atom folding, unfolding, and equilibrium simulations, can be described as a reptation move of one strand of the beta-sheet with respect to the other. This reptation move indicates that non-native interactions can play a dominant role in the folding of secondary structures. Furthermore, such a mechanism mediated by non-native hydrogen bonds is not available for study by unfolding and Gō model simulations. The exact folding path followed by a given beta-hairpin is likely to be influenced by its sequence and the solvent conditions. Taken together, these results point to a more complex folding picture than expected for a simple beta-hairpin.  相似文献   

2.
Simulations and experiments that monitor protein unfolding under denaturing conditions are commonly employed to study the mechanism by which a protein folds to its native state in a physiological environment. Due to the differences in conditions and the complexity of the reaction, unfolding is not necessarily the reverse of folding. To assess the relevance of temperature initiated unfolding studies to the folding problem, we compare the folding and unfolding of a 125-residue protein model by Monte Carlo dynamics at two temperatures; the lower one corresponds to the range used in T -jump experiments and the higher one to the range used in unfolding simulations of all-atom models. The trajectories that lead from the native state to the denatured state at these elevated temperatures are less diverse than those observed in the folding simulations. At the lower temperature, the system unfolds through a mandatory intermediate that corresponds to a local free energy minimum. At the higher temperature, no such intermediate is observed, but a similar pathway is followed. The structures contributing to the unfolding pathways resemble most closely those that make up the "fast track" of folding. The transition state for unfolding at the lower temperature (above Tm) is determined and is found to be more structured than the transition state for folding below the melting temperature. This shift towards the native state is consistent with the Hammond postulate. The implications for unfolding simulations of higher resolution models and for unfolding experiments of proteins are discussed.  相似文献   

3.
Ab initio folding of proteins with all-atom discrete molecular dynamics   总被引:3,自引:0,他引:3  
Discrete molecular dynamics (DMD) is a rapid sampling method used in protein folding and aggregation studies. Until now, DMD was used to perform simulations of simplified protein models in conjunction with structure-based force fields. Here, we develop an all-atom protein model and a transferable force field featuring packing, solvation, and environment-dependent hydrogen bond interactions. We performed folding simulations of six small proteins (20-60 residues) with distinct native structures by the replica exchange method. In all cases, native or near-native states were reached in simulations. For three small proteins, multiple folding transitions are observed, and the computationally characterized thermodynamics are in qualitative agreement with experiments. The predictive power of all-atom DMD highlights the importance of environment-dependent hydrogen bond interactions in modeling protein folding. The developed approach can be used for accurate and rapid sampling of conformational spaces of proteins and protein-protein complexes and applied to protein engineering and design of protein-protein interactions.  相似文献   

4.
Experimental evidence and theoretical models both suggest that protein folding is initiated within specific fragments intermittently adopting conformations close to that found in the protein native structure. These folding initiation sites encompassing short portions of the protein are ideally suited for study in isolation by computational methods aimed at peering into the very early events of folding. We have used Molecular Dynamics (MD) technique to investigate the behavior of an isolated protein fragment formed by residues 85 to 102 of barnase that folds into a β hairpin in the protein native structure. Three independent MD simulations of 1.3 to 1.8 ns starting from unfolded conformations of the peptide portrayed with an all-atom model in water were carried out at gradually decreasing temperature. A detailed analysis of the conformational preferences adopted by this peptide in the course of the simulations is presented. Two of the unfolded peptide conformations fold into a hairpin characterized by native and a larger bulk of nonnative interactions. Both refolding simulations substantiate the close relationship between interstrand compactness and hydrogen bonding network involving backbone atoms. Persistent compactness witnessed by side-chain interactions always occurs concomitantly with the formation of backbone hydrogen bonds. No highly populated conformations generated in a third simulation starting from the remotest unfolded conformer relative to the native structure are observed. However, nonnative long-range and medium-range contacts with the aromatic moiety of Trp94 are spotted, which are in fair agreement with a former nuclear magnetic resonance study of a denaturing solution of an isolated barnase fragment encompassing the β hairpin. All this lends reason to believe that the 85–102 barnase fragment is a strong initiation site for folding. Proteins 29:212–227, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
How is the native structure encoded in the amino acid sequence? For the traditional backbone centric view, the dominant forces are hydrogen bonds (backbone) and phi-psi propensity. The role of hydrophobicity is non-specific. For the side-chain centric view, the dominant force of protein folding is hydrophobicity. In order to understand the balance between backbone and side-chain forces, we have studied the contributions of three components of a beta-hairpin peptide: turn, backbone hydrogen bonding and side-chain interactions, of a 16-residue fragment of protein G. The peptide folds rapidly and cooperatively to a conformation with a defined secondary structure and a packed hydrophobic cluster of aromatic side-chains. Our strategy is to observe the structural stability of the beta-hairpin under systematic perturbations of the turn region, backbone hydrogen bonds and the hydrophobic core formed by the side-chains, respectively. In our molecular dynamics simulations, the peptides are solvated. with explicit water molecules, and an all-atom force field (CFF91) is used. Starting from the original peptide (G41EWTYDDATKTFTVTE56), we carried out the following MD simulations. (1) unfolding at 350 K; (2) forcing the distance between the C(alpha) atoms of ASP47 and LYS50 to be 8 A; (3) deleting two turn residues (Ala48 and Thr49) to form a beta-sheet complex of two short peptides, GEWTYDD and KTFTVTE; (4) four hydrophobic residues (W43, Y45, F52 and T53) are replaced by a glycine residue step-by-step; and (5) most importantly, four amide hydrogen atoms (T44, D46, T53, and T55, which are crucial for backbone hydrogen bonding), are substituted by fluorine atoms. The fluorination not only makes it impossible to form attractive hydrogen bonding between the two beta-hairpin strands, but also introduces a repulsive force between the two strands due to the negative charges on the fluorine and oxygen atoms. Throughout all simulations, we observe that backbone hydrogen bonds are very sensitive to the perturbations and are easily broken. In contrast, the hydrophobic core survives most perturbations. In the decisive test of fluorination, the fluorinated peptide remains folded under our simulation conditions (5 ns, 278 K). Hydrophobic interactions keep the peptide folded, even with a repulsive force between the beta-strands. Thus, our results strongly support a side-chain centric view for protein folding.  相似文献   

6.
Both folded and unfolded conformations should be observed for a protein at its melting temperature (T(m)), where DeltaG between these states is zero. In an all-atom molecular dynamics simulation of chymotrypsin inhibitor 2 (CI2) at its experimental T(m), the protein rapidly loses its low-temperature native structure; it then unfolds before refolding to a stable, native-like conformation. The initial unfolding follows the unfolding pathway described previously for higher-temperature simulations: the hydrophobic core is disrupted, the beta-sheet pulls apart and the alpha-helix unravels. The unfolded state reached under these conditions maintains a kernel of structure in the form of a non-native hydrophobic cluster. Refolding simply reverses this path, the side-chain interactions shift, the helix refolds, and the native packing and hydrogen bonds are recovered. The end result of this refolding is not the initial crystal structure; it contains the proper topology and the majority of the native contacts, but the structure is expanded and the contacts are long. We believe this to be the native state at elevated temperature, and the change in volume and contact lengths is consistent with experimental studies of other native proteins at elevated temperature and the chemical denaturant equivalent of T(m).  相似文献   

7.
Uversky VN  Fink AL 《FEBS letters》2002,515(1-3):79-83
What is the first step in protein folding - hydrophobic collapse (compaction) or secondary structure formation? It is still not clear if the major driving force in protein folding is hydrogen bonding or hydrophobic interactions or both. We analyzed data on the conformational characteristics of 41 globular proteins in native and partially folded conformational states. Our analysis shows that a good correlation exists between relative decrease in hydrodynamic volume and increase in secondary structure content. No compact equilibrium intermediates lacking secondary structure, or highly ordered non-compact species, were found. This correlation provides experimental support for the hypothesis that hydrophobic collapse occurs simultaneously with formation of secondary structure in the early stages of the protein folding.  相似文献   

8.
Chowdhury S  Zhang W  Wu C  Xiong G  Duan Y 《Biopolymers》2003,68(1):63-75
The formation mechanism of an alanine-based peptide has been studied by all-atom molecular dynamics simulations with a recently developed all-atom point-charge force field and the Generalize Born continuum solvent model at an effective salt concentration of 0.2M. Thirty-two simulations were conducted. Each simulation was performed for 100 ns. A surprisingly complex folding process was observed. The development of the helical content can be divided into three phases with time constants of 0.06-0.08, 1.4-2.3, and 12-13 ns, respectively. Helices initiate extreme rapidly in the first phase similar to that estimated from explicit solvent simulations. Hydrophobic collapse also takes place in this phase. A folding intermediate state develops in the second phase and is unfolded to allow the peptide to reach the transition state in the third phase. The folding intermediate states are characterized by the two-turn short helices and the transition states are helix-turn-helix motifs-both of which are stabilized by hydrophobic clusters. The equilibrium helical content, calculated by both the main-chain Phi-Psi torsion angles and the main-chain hydrogen bonds, is 64-66%, which is in remarkable agreement with experiments. After corrected for the solvent viscosity effect, an extrapolated folding time of 16-20 ns is obtained that is in qualitative agreement with experiments. Contrary to the prevailing opinion, neither initiation nor growth of the helix is the rate-limiting step. Instead, the rate-limiting step for this peptide is breaking the non-native hydrophobic clusters in order to reach the transition state. The implication to the folding mechanisms of proteins is also discussed.  相似文献   

9.
β-Hairpins are the simplest form of β-sheets which, due to the presence of long-range interactions, can be considered as tertiary structures. Molecular dynamics simulation is a powerful tool that can unravel whole pathways of protein folding/unfolding at atomic resolution. We have performed several molecular dynamics simulations, to a total of over 250 ns, of a β-hairpin peptide in water using GROMACS. We show that hydrophobic interactions are necessary for initiating the folding of the peptide. Once formed, the peptide is stabilized by hydrogen bonds and disruption of hydrophobic interactions in the folded peptide does not denature the structure. In the absence of hydrophobic interactions, the peptide fails to fold. However, the introduction of a salt-bridge compensates for the loss of hydrophobic interactions to a certain extent. Figure Model of b-hairpin folding: Folding is initiated by hydrophobic interactions (Brown circles). The folded structure, once formed, is stabilized by hydrogen bonds (red lines) and is unaffected by loss of hydrophobic contacts  相似文献   

10.
Irbäck A  Sjunnesson F 《Proteins》2004,56(1):110-116
We study the folding thermodynamics of a beta-hairpin and two three-stranded beta-sheet peptides using a simplified sequence-based all-atom model, in which folding is driven mainly by backbone hydrogen bonding and effective hydrophobic attraction. The native populations obtained for these three sequences are in good agreement with experimental data. We also show that the apparent native population depends on which observable is studied; the hydrophobicity energy and the number of native hydrogen bonds give different results. The magnitude of this dependence matches well with the results obtained in two different experiments on the beta-hairpin.  相似文献   

11.
We have investigated the solution structure, equilibrium properties, and folding kinetics of a 17-residue beta-hairpin-forming peptide derived from the protein ubiquitin. NMR experiments show that at 4 degrees C the peptide has a highly populated beta-hairpin conformation. At protein concentrations higher than 0.35 mM, the peptide aggregates. Sedimentation equilibrium measurements show that the aggregate is a trimer, while NMR indicates that the beta-hairpin conformation is maintained in the trimer. The relaxation kinetics in nanosecond laser temperature-jump experiments reveal a concentration-independent microsecond phase, corresponding to beta-hairpin unfolding-refolding, and a concentration-dependent millisecond phase due to oligomerization. Kinetic modeling of the relaxation rates and amplitudes yields the folding and unfolding rates for the monomeric beta-hairpin, as well as assembly and disassembly rates for trimer formation consistent with the equilibrium constant determined by sedimentation equilibrium. When the net charge on the peptides and ionic strength were taken into account, the rate of trimer assembly approaches the Debye-Smoluchowski diffusion limit. At 300 K, the rate of formation of the monomeric hairpin is (17 micros)(-1), compared to rates of (0.8 micros)(-1) to (52 micros)(-1) found for other peptides. After using Kramers theory to correct for the temperature dependence of the pre-exponential factor, the activation energy for hairpin formation is near zero, indicating that the barrier to folding is purely entropic. Comparisons with previously measured rates for a series of hairpins are made to distinguish between zipper and hydrophobic collapse mechanisms. Overall, the experimental data are most consistent with the zipper mechanism in which structure formation is initiated at the turn, the mechanism predicted by the Ising-like statistical mechanical model that was developed to explain the equilibrium and kinetic data for the beta-hairpin from protein GB1. In contrast, the majority of simulation studies favor a hydrophobic collapse mechanism. However, with few exceptions, there is little or no quantitative comparison of the simulation results with experimental data.  相似文献   

12.
Protein dynamics take place on many time and length scales. Coarse-grained structure-based (Go) models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All-atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure-based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all-atom model. Results for the B domain of Protein A, the SH3 domain of C-Src Kinase, and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a C(alpha) structure-based model and an all-atom empirical forcefield. Key findings include: (1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature, (2) folding mechanisms are robust to variations of the energetic parameters, (3) protein folding free-energy barriers can be manipulated through parametric modifications, (4) the global folding mechanisms in a C(alpha) model and the all-atom model agree, although differences can be attributed to energetic heterogeneity in the all-atom model, and (5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Because this structure-based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function.  相似文献   

13.
Du D  Tucker MJ  Gai F 《Biochemistry》2006,45(8):2668-2678
The folding kinetics of a 16-residue beta-hairpin (trpzip4) and five mutants were studied by a laser-induced temperature-jump infrared method. Our results indicate that mutations which affect the strength of the hydrophobic cluster lead to a decrease in the thermal stability of the beta-hairpin, as a result of increased unfolding rates. For example, the W45Y mutant has a phi-value of approximately zero, implying a folding transition state in which the native contacts involving Trp45 are not yet formed. On the other hand, mutations in the turn or loop region mostly affect the folding rate. In particular, replacing Asp46 with Ala leads to a decrease in the folding rate by roughly 9 times. Accordingly, the phi-value for D46A is determined to be approximately 0.77, suggesting that this residue plays a key role in stabilizing the folding transition state. This is most likely due to the fact that the main chain and side chain of Asp46 form a characteristic hydrogen bond network with other residues in the turn region. Taken together, these results support the folding mechanism we proposed before, which suggests that the turn formation is the rate-limiting step in beta-hairpin folding and, consequently, a stronger turn-promoting sequence increases the stability of a beta-hairpin primarily by increasing its folding rate, whereas a stronger hydrophobic cluster increases the stability of a beta-hairpin primarily by decreasing its unfolding rate. In addition, we have examined the compactness of the thermally denatured and urea-denatured states of another 16-residue beta-hairpin, using the method of fluorescence resonance energy transfer. Our results show that the thermally denatured state of this beta-hairpin is significantly more compact than the urea-denatured state, suggesting that the very first step in beta-hairpin folding, when initiated from an extended conformation, probably corresponds to a process of hydrophobic collapse.  相似文献   

14.
Lee J  Shin S 《Biophysical journal》2001,81(5):2507-2516
We have studied the mechanism of formation of a 16-residue beta-hairpin from the protein GB1 using molecular dynamics simulations in an aqueous environment. The analysis of unfolding trajectories at high temperatures suggests a refolding pathway consisting of several transient intermediates. The changes in the interaction energies of residues are related with the structural changes during the unfolding of the hairpin. The electrostatic energies of the residues in the turn region are found to be responsible for the transition between the folded state and the hydrophobic core state. The van der Waals interaction energies of the residues in the hydrophobic core reflect the behavior of the radius of gyration of the core region. We have examined the opposing influences of the protein-protein (PP) energy, which favors the native state, and the protein-solvent (PS) energy, which favors unfolding, in the formation of the beta-hairpin structure. It is found that the behavior of the electrostatic components of PP and PS energies reflects the structural changes associated with the loss of backbone hydrogen bonding. Relative changes in the PP and PS van der Waals interactions are related with the disruption of the hydrophobic core of a protein. The results of the simulations support the hydrophobic collapse mechanism of beta-hairpin folding.  相似文献   

15.
Redesigning the hydrophobic core of a four-helix-bundle protein.   总被引:13,自引:11,他引:2       下载免费PDF全文
Rationally redesigned variants of the 4-helix-bundle protein Rop are described. The novel proteins have simplified, repacked, hydrophobic cores and yet reproduce the structure and native-like physical properties of the wild-type protein. The repacked proteins have been characterized thermodynamically and their equilibrium and kinetic thermal and chemical unfolding properties are compared with those of wild-type Rop. The equilibrium stability of the repacked proteins to thermal denaturation is enhanced relative to that of the wild-type protein. The rate of chemically induced folding and unfolding of wild-type Rop is extremely slow when compared with other small proteins. Interestingly, although the repacked proteins are more thermally stable than the wild type, their rates of chemically induced folding and unfolding are greatly increased in comparison to wild type. Perhaps as a consequence of this, their equilibrium stabilities to chemical denaturants are slightly reduced in comparison to the wild type.  相似文献   

16.
Scheraga HA 《Biopolymers》2008,89(5):479-485
An evolution of procedures to simulate protein structure and folding pathways is described. From an initial focus on the helix-coil transition and on hydrogen-bonding and hydrophobic interactions, our original attempts to determine protein structure and folding pathways were based on an experimental approach. Experiments on the oxidative folding of reduced bovine pancreatic ribonuclease A (RNase A) led to a mechanism by which the molecule folded to the native structure by a minimum of four different pathways. The experiments with RNase A were followed by development of a molecular mechanics approach, first, making use of global optimization procedures and then with molecular dynamics (MD), evolving from an all-atom to a united-residue model. This hierarchical MD approach facilitated probing of the folding trajectory to longer time scales than with all-atom MD, and hence led to the determination of complete folding trajectories, thus far for a protein containing as many as 75 amino acid residues. With increasing refinement of the computational procedures, the computed results are coming closer to experimental observations, providing an understanding as to how physics directs the folding process.  相似文献   

17.
We examine the dynamical (un)folding pathways of the C-terminal beta-hairpin of protein G-B1 at room temperature in explicit solvent, by employing transition path sampling algorithms. The path ensembles contain information on the folding kinetics, including solvent motion. We determine the transition state ensembles for the two main transitions: 1), the hydrophobic collapse; and 2), the backbone hydrogen bond formation. In both cases the transition state ensembles are characterized by a layer (1) or a strip (2) of water molecules in between the two hairpin strands, supporting the hypothesis of the solvent as lubricant in the folding process. The transition state ensembles do not correspond with saddle points in the equilibrium free-energy landscapes. The kinetic pathways are thus not completely determined by the free-energy landscape. This phenomenon can occur if the order parameters obey different timescales. Using the transition interface sampling technique, we calculate the rate constants for (un)folding and find them in reasonable agreement with experiments, thus supporting the validation of using all-atom force fields to study protein folding.  相似文献   

18.
A high resolution reduced model of proteins is used in Monte Carlo dynamics studies of the folding mechanism of a small globular protein, the B1 immunoglobulin-binding domain of streptococcal protein G. It is shown that in order to reproduce the physics of the folding transition, the united atom based model requires a set of knowledge-based potentials mimicking the short-range conformational propensities and protein-like chain stiffness, a model of directional and cooperative hydrogen bonds, and properly designed knowledge-based potentials of the long-range interactions between the side groups. The folding of the model protein is cooperative and very fast. In a single trajectory, a number of folding/unfolding cycles were observed. Typically, the folding process is initiated by assembly of a native-like structure of the C-terminal hairpin. In the next stage the rest of the four-ribbon beta-sheet folds. The slowest step of this pathway is the assembly of the central helix on the scaffold of the beta-sheet.  相似文献   

19.
An off-lattice 46-bead model of a small all-beta protein has been recently criticized for possessing too many traps and long-lived intermediates compared with the folding energy landscape predicted for real proteins and models using the principle of minimal frustration. Using a novel sequence design approach based on threading for finding beneficial mutations for destabilizing traps, we proposed three new sequences for folding in the beta-sheet model. Simulated annealing on these sequences found the global minimum more reliably, indicative of a smoother energy landscape, and simulated thermodynamic variables found evidence for a more cooperative collapse transition, lowering of the collapse temperature, and higher folding temperatures. Folding and unfolding kinetics were acquired by calculating first-passage times, and the new sequences were found to fold significantly faster than the original sequence, with a concomitant lowering of the glass temperature, although none of the sequences have highly stable native structures. The new sequences found here are more representative of real proteins and are good folders in the T(f) > T(g) sense, and they should prove useful in future studies of the details of transition states and the nature of folding intermediates in the context of simplified folding models. These results show that our sequence design approach using threading can improve models possessing glasslike folding dynamics.  相似文献   

20.
Zhang J  Qin M  Wang W 《Proteins》2006,62(3):672-685
The folding process of trpzip2 beta-hairpin is studied by the replica exchange molecular dynamics (REMD) and normal MD simulations, aiming to understand the folding mechanism of this unique small, stable, and fast folder, as well as to reveal the general principles in the folding of beta-hairpins. According to our simulations, the TS ensemble is mainly characterized by a largely formed turn and the interaction between the inner pair of hydrophobic core residues. The folding is a zipping up of hydrogen bonds. However, the nascent turn has to be stabilized by the partially formed hydrophobic core to cross the TS. Thus our folding picture is in essence a blend of hydrogen bond-centric and hydrophobic core-centric mechanism. Our simulations provide a direct evidence for a very recent experiment (Du et al., Proc Natl Acad Sci USA 2004;101:15915-15920), which suggests that the turn formation is the rate-limiting step for beta-hairpin folding and the unfolding is mainly determined by the hydrophobic interactions. Besides, the relationship between hydrogen bond stabilities and their relative importance in folding are investigated. It is found that the hydrogen bonds with higher stabilities need not play more important roles in the folding process, and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号