首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After confirming that adrenalectomy per se does not affect skeletal muscle protein synthesis rates, we examined whether endogenously produced glucocorticoids modulate the effect of physiological insulin concentrations on protein synthesis in overnight-fasted rats 4 days after either a bilateral adrenalectomy (ADX), ADX with dexamethasone treatment (ADX + DEX), or a sham operation (Sham; n = 6 each). Rats received a 3-h euglycemic insulin clamp (3 mU. min(-1). kg(-1)). Rectus muscle protein synthesis was measured at the end of the clamp, and the phosphorylation states of protein kinase B (Akt), eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and ribosomal protein S6 kinase (p70(S6K)) were quantitated before and after the insulin clamp. The basal phosphorylation states of Akt, 4E-BP1, and p70(S6K) were similar between ADX and Sham rats. Insulin significantly enhanced the phosphorylation of Akt (P < 0.03), 4E-BP1 (P = 0.003), and p70(S6K) (P < 0.002) in ADX but not in Sham rats. Protein synthesis was significantly greater after insulin infusion in ADX than in Sham rats (P = 0.01). Glucocorticoid replacement blunted the effect of insulin on Akt, 4E-BP1, and p70(S6K) phosphorylation and protein synthesis. In conclusion, glucocorticoid deficiency enhances the insulin sensitivity of muscle protein synthesis, which is mediated by increased phosphorylation of translation initiation-regulatory proteins.  相似文献   

2.
Insulin (100 U/ml) stimulated protein synthesis and PGF2 release in isolated rabbit muscle, but had little effect on the rate of protein degradation. The effect of insulin persisted for at least 5 h after removal of the hormone. Indomethacin, added at the start of the incubation, inhibited the stimulatory effect of insulin on protein synthesis and PGF2 release, but did not block the binding of iodinated insulin. When added 2 h after insulin, indomethacin did not inhibit the stimulation of protein synthesis but completely inhibited the increase in PGF2 release. The results suggest that the stimulation of protein synthesis by insulin is mediated by metabolites of membrane phospholipids but that these changes are involved during the phase of response that immediately follows the binding of insulin to its receptor.  相似文献   

3.
4.
Stable isotope tracer experiments of human muscle amino acid and protein kinetics often involve a sequential design, with the same subject studied at baseline and during an intervention. However, prolonged fasting and sequential muscle biopsies from the same area could theoretically affect muscle protein metabolism. The purpose of this study was to determine if sequential muscle biopsies and extended fasting significantly affect parameters of muscle protein and amino acid kinetics in six human subjects. After a 12-h overnight fast, a primed continuous infusion of L-[ring-(2)H(5)]phenylalanine was started. After 120 min, we took the first of a series of five hourly muscle biopsies from the same vastus lateralis to measure mixed muscle protein fractional synthetic rate. Furthermore, between 150-180, 210-240, and 330-360 min, we measured leg phenylalanine kinetics using the two-pool and the three-pool arteriovenous balance models. Tracer enrichments were at steady state, and muscle protein FSR and phenylalanine kinetics did not change throughout the experiment (P=not significant). We conclude that a 6-h tracer infusion during extended fasting (up to 18 h) with five sequential muscle biopsies from the same muscle do not affect basal mixed muscle protein synthesis and muscle phenylalanine kinetics in human subjects. Thus, when using a sequential study design over this period of time, it is unnecessary to include a saline only control group to account for these variables.  相似文献   

5.
6.
7.
1. The effects of insulin in vitro on tissue pools and incorporation into protein of glycine and leucine in the extensor digitorum longus muscle of the rat are reported. 2. It was found that insulin decreased the lag period before the establishment of a linear rate of incorporation of radioactive glycine into protein. 3. The hormone increased the size of the free intracellular glycine pool. No such effect was found for leucine. The accumulation of radioactive glycine in the intracellular fluid compartment was increased. The content of radioactive leucine in the intracellular compartment was decreased. 4. Insulin decreased the specific radioactivity of both glycine and leucine in the extracellular fluid. 5. The hormone also decreased protein catabolism. 6. The effect on protein synthesis was not caused by an increase in the specific radioactivity of the extracellular pool but was possibly related to increased amino acid concentrations in this pool, which could in turn have affected the aggregation of ribosomes.  相似文献   

8.
9.
10.
Muscle protein turnover following resistance exercise and amino acid availability are relatively well described. By contrast, the beneficial effects of different sources of intact proteins in relation to exercise need further investigation. Our objective was to compare muscle anabolic responses to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1-6 h postexercise after whey and casein intake, both of which were higher compared with control (P < 0.05). Phosphorylation of Akt and p70(S6K) was increased after exercise and protein intake (P < 0.05), but no differences were observed between the types of protein except for total 4E-BP1, which was higher after whey intake than after casein intake (P < 0.05). In conclusion, whey and casein intake immediately after resistance exercise results in an overall equal MPS response despite temporal differences in insulin and amino acid concentrations and 4E-BP1.  相似文献   

11.
The separate effects of insulin and growth hormone on the uptake and incorporation of five amino acids into diaphragm muscle from non-hypophysectomized rabbits has been examined. Both growth hormone and insulin, when present in the medium separately, stimulated the incorporation into protein of the amino acids, leucine, arginine, valine, lysine and histidine. Insulin also stimulated amino acid uptake, but growth hormone did not. When insulin and growth hormone were present in the incubation medium together, the uptake and incorporation of valine, the only amino acid studied under these conditions, tended to be greater than the sum of the separate effects of the two hormones.  相似文献   

12.
Sepsis promotes insulin resistance and reduces protein synthesis in skeletal muscle of adults. The effect of sepsis on insulin-stimulated muscle protein synthesis has not been determined in neonates, a highly anabolic population that is uniquely sensitive to insulin. Overnight fasted neonatal pigs were infused for 8 h with endotoxin [lipopolysaccharide (LPS), 0 and 10 mug.kg(-1).h(-1)]. Glucose and amino acids were maintained at fasting levels, insulin was clamped at either fasting or fed (2 or 10 muU/ml) levels, and fractional protein synthesis rates were determined at the end of the infusion. LPS infusion induced a septic-like state, as indicated by a sustained elevation in body temperature, heart rate, and cortisol. At fasting insulin levels, LPS reduced fractional protein synthesis rates in gastrocnemius muscle (-26%) but had no effect on the masseter and heart. By contrast, LPS stimulated liver protein synthesis (+28%). Increasing insulin to fed levels accelerated protein synthesis rates in gastrocnemius (controls by +38%, LPS by +60%), masseter (controls by +50%, LPS by +43%), heart (controls by +34%, LPS by +40%), and diaphragm (controls by +54%, LPS by +29%), and the response to insulin was similar in LPS and controls. Insulin did not alter protein synthesis in liver, kidney, or jejunum in either group. These findings suggest that acute endotoxemia lowers basal fasting muscle protein synthesis in neonates but does not alter the response of protein synthesis to insulin.  相似文献   

13.
Effect of phenylalanine on protein synthesis in the developing rat brain   总被引:5,自引:7,他引:5  
1. Inhibition of the rate of incorporation of [(35)S]methionine into protein by phenylalanine was more effective in 18-day-old than in 8-day-old or adult rat brain. 2. Among the subcellular fractions incorporation of [(35)S]methionine into myelin proteins was most inhibited in 18-day-old rat brain. 3. Transport of [(35)S]methionine and [(14)C]leucine into the brain acid-soluble pool was significantly decreased in 18-day-old rats by phenylalanine (2mg/g body wt.). The decrease of the two amino acids in the acid-soluble pool equalled the inhibition of their rate of incorporation into the protein. 4. Under identical conditions, entry of [(14)C]glycine into the brain acid-soluble pool and incorporation into protein and uptake of [(14)C]acetate into lipid was not affected by phenylalanine. 5. It is proposed that decreased myelin synthesis seen in hyperphenylalaninaemia or phenylketonuria may be due to alteration of the free amino acid pool in the brain during the vulnerable period of brain development. Amyelination may be one of many causes of mental retardation seen in phenylketonuria.  相似文献   

14.
Recent studies have implicated the mTOR-signaling pathway as a primary component for muscle growth in mammals. The purpose of this investigation was to examine signaling pathways for muscle protein synthesis after resistance exercise. Sprague-Dawley rats (male, 6 mo old) were assigned to either resistance exercise or control groups. Resistance exercise was accomplished in operantly conditioned animals using a specially designed flywheel apparatus. Rats performed two sessions of resistance exercise, separated by 48 h, each consisting of 2 sets of 25 repetitions. Sixteen hours after the second session, animals were killed, and soleus muscles were examined for rates of protein synthesis with and without insulin and/or rapamycin (mTOR inhibitor) and/or PD-098059 (PD; MEK kinase inhibitor). Results of this study demonstrated that rates of synthesis were higher (P < 0.05) with insulin after exercise compared with without insulin, or to control muscles, regardless of insulin. Rapamycin lowered (P < 0.05) rates of synthesis in controls, with or without insulin, and after exercise without insulin. However, insulin was able to overcome the inhibition of rapamycin after exercise (P < 0.05). PD had no effect on protein synthesis in control rats, but the addition of PD to exercised muscle resulted in lower (P < 0.05) rates of synthesis, and this inhibition was not rescued by insulin. Western blot analyses demonstrated that the inhibitors used in the present study were selective and effective for preventing activation of specific signaling proteins. Together, these results suggest that the insulin-facilitated increase of muscle protein synthesis after resistance exercise requires multiple signaling pathways.  相似文献   

15.
To determine whether the enhanced insulin-sensitivity of glucose metabolism in muscle after acute exercise also extends to protein metabolism, untrained and exercise-trained rats were subjected to an acute bout of exercise, and the responses of protein synthesis and degradation to insulin were measured in epitrochlearis muscles in vitro. Acute exercise of both untrained and trained rats decreased protein synthesis in muscle in the absence or presence of insulin, but protein degradation was not altered. Exercise training alone had no effect on protein synthesis or degradation in muscle in the absence or presence of insulin. Acute exercise or training alone enhanced the sensitivities of both protein synthesis and degradation to insulin, but the enhanced insulin-sensitivities from training alone were not additive to those after acute exercise. These results indicate that: a decrease in protein synthesis is the primary change in muscle protein turnover after acute exercise and is not altered by prior exercise training, and the enhanced insulin-sensitivities of metabolism of both glucose and protein after either acute exercise or training suggest post-binding receptor events.  相似文献   

16.
Despite being an anabolic hormone in skeletal muscle, insulin's anticatabolic mechanism in humans remains controversial, with contradictory reports showing either stimulation of protein synthesis (PS) or inhibition of protein breakdown (PB) by insulin. Earlier measurements of muscle PS and PB in humans have relied on different surrogate measures of aminoacyl-tRNA and intracellular pools. We report that insulin's effect on muscle protein turnover using aminoacyl-tRNA as the precursor of PS and PB is calculated by mass balance of tracee amino acid (AA). We compared the results calculated from various surrogate measures. To determine the physiological role of insulin on muscle protein metabolism, we infused tracers of leucine and phenylalanine into 18 healthy subjects, and after 3 h, 10 subjects received a 4-h femoral arterial infusion of insulin (0.125 mUxkg(-1)xmin(-1)), while eight subjects continued with saline. Tracer-to-tracee ratios of leucine, phenylalanine, and ketoisocaproate were measured in the arterial and venous plasma, muscle tissue fluid, and AA-tRNA to calculate muscle PB and PS. Insulin infusion, unlike saline, significantly reduced the efflux of leucine and phenylalanine from muscle bed, based on various surrogate measures which agreed with those based on leucyl-tRNA (-28%), indicating a reduction in muscle PB (P < 0.02) without any significant effect on muscle PS. In conclusion, using AA-tRNA as the precursor pool, it is demonstrated that, in healthy humans in the postabsorptive state, insulin does not stimulate muscle protein synthesis and confirmed that insulin achieves muscle protein anabolism by inhibition of muscle protein breakdown.  相似文献   

17.
Timing of nutrient ingestion has been demonstrated to influence the anabolic response of muscle following exercise. Previously, we demonstrated that net amino acid uptake was greater when free essential amino acids plus carbohydrates were ingested before resistance exercise rather than following exercise. However, it is unclear if ingestion of whole proteins before exercise would stimulate a superior response compared with following exercise. This study was designed to examine the response of muscle protein balance to ingestion of whey proteins both before and following resistance exercise. Healthy volunteers were randomly assigned to one of two groups. A solution of whey proteins was consumed either immediately before exercise (PRE; n = 8) or immediately following exercise (POST; n = 9). Each subject performed 10 sets of 8 repetitions of leg extension exercise. Phenylalanine concentrations were measured in femoral arteriovenous samples to determine balance across the leg. Arterial amino acid concentrations were elevated by approximately 50%, and net amino acid balance switched from negative to positive following ingestion of proteins at either time. Amino acid uptake was not significantly different between PRE and POST when calculated from the beginning of exercise (67 +/- 22 and 27 +/- 10 for PRE and POST, respectively) or from the ingestion of each drink (60 +/- 17 and 63 +/- 15 for PRE and POST, respectively). Thus the response of net muscle protein balance to timing of intact protein ingestion does not respond as does that of the combination of free amino acids and carbohydrate.  相似文献   

18.
19.
Stationary-phase, minimal deviation hepatoma H4-II-E-C3 cell cultures that are serum-deprived respond with a biphasic time course of phenylalanine hydroxylase induction when dialyzed fetal calf serum or insulin is added. These two agents induce phenylalanine hydroxylase additively, during both the initial 3-hour and the delayed 24-hour phases. The initial phase of induction by insulin is inhibited by cycloheximide but not by actinomycin D. The delayed induction by both dialyzed fetal calf serum and insulin is inhibited by 10(-6) M cycloheximide and 0.20 mug/ml actinomycin D. H4-II-E-C3 cells in culture do not synthesize the factor(s) in serum that induce phenylalanine hydroxylase.  相似文献   

20.
Nitric oxide (NO) is a key regulatory molecule with wide vascular, cellular, and metabolic effects. Insulin affects NO synthesis in vitro. No data exist on the acute effect of insulin on NO kinetics in vivo. By employing a precursor-product tracer method in humans, we have directly estimated the acute effect of insulin on intravascular NO(x) (i.e., the NO oxidation products) fractional (FSR) and absolute (ASR) synthesis rates in vivo. Nine healthy male volunteers were infused iv with L-[(15)N(2)-guanidino]arginine ([(15)N(2)]arginine) for 6 h. Timed measurements of (15)NO(x) and [(15)N(2)]arginine enrichments in whole blood were performed in the first 3 h in the fasting state and then following a 3-h euglycemic-hyperinsulinemic clamp (with plasma insulin raised to approximately 1,000 pmol/l). In the last 60 min of each experimental period, at approximately steady-state arginine enrichment, a linear increase of (15)NO(x) enrichment (mean r = 0.9) was detected in both experimental periods. In the fasting state, NO(x) FSR was 27.4 +/- 4.3%/day, whereas ASR was 0.97 +/- 0.36 mmol/day, accounting for 0.69 +/- 0.27% of arginine flux. Following hyperinsulinemia, both FSR and ASR of NO(x) increased (FSR by approximately 50%, to 42.4 +/- 6.7%/day, P < 0.005; ASR by approximately 25%, to 1.22 +/- 0.41 mmol/day, P = 0.002), despite a approximately 20-30% decrease of arginine flux and concentration. The fraction of arginine flux used for NO(x) synthesis was doubled, to 1.13 +/- 0.35% (P < 0.003). In conclusion, whole body NO(x) synthesis can be directly measured over a short observation time with stable isotope methods in humans. Insulin acutely stimulates NO(x) synthesis from arginine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号