首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tryptophan 214, the only tryptophan residue in human serum albumin, is located in the physiologically important subdomain 2A ligand binding site. In the present study the fluorescence lifetime of tryptophan 214 in the following human serum albumin (HSA) mutants with substitutions in subdomain 2A were determined: K195M, K199M, F211V, R218M, R218H, R218A, R222M, H242V, and R257M. An HSA mutant in which tryptophan was moved from subdomain 2A to subdomain 3A (W214L/Y411W) was also examined. Additionally, the fluorescence lifetime of tryptophan 214 in an HSA fragment consisting of subdomains 1A, 1B, and 2A (1A-1B-2A HSA) was determined. For those species expected to have the most dramatic changes in tryptophan microenvironment, W214L/Y411W and 1A-1B-2A HSA, clear changes in tryptophan lifetimes were observed. Significant changes were also seen for those species with mutations at position 218, which is next to tryptophan in the X-ray structure of HSA. However, significant changes were also observed for H242V and R257M, which contain substitutions at positions not immediately adjacent to tryptophan 214, highlighting the conformational flexibility of subdomain 2A.  相似文献   

2.
Previous studies have shown that many arachidonic acid metabolites bind to human serum albumin (HSA) and that the metabolism of these molecules is altered as a result of binding. The present study attempted to gain insights into the mechanisms by which prostaglandins bound to subdomain 2A of HSA are metabolized by catalytic processes. The breakdown of the prostaglandin 15-keto-PGE(2) to 15-keto-PGA(2) and 15-keto-PGB(2) in the presence of wild-type HSA and a number of subdomain 2A mutants was examined using a previously validated spectroscopic method which monitors absorbance at 505 nm. The species examined using this method were wild-type HSA, K195M, K199M, F211V, W214L, R218M, R218P, R218H, R222M, H242V, R257M, and bovine serum albumin. Previous studies of HSA-mediated catalysis indicated that the breakdown of HSA-bound prostaglandins results from an alkaline microenvironment in the binding site. Our results show that the catalytic breakdown of HSA-bound 15-keto-PGE(2) to 15-keto-PGB(2) results from two specific processes which are modulated by specific amino acid residues. Specifically, some amino acid residues modulate the rate of step 1, the conversion of 15-keto-PGE(2) to 15-keto-PGA(2), while other residues modulate the rate of step 2, the conversion of 15-keto-PGA(2) to 15-keto-PGB(2). Some residues modulate the rate of steps 1 and 2. In total, while our results support the involvement of certain basic amino acid residues in the catabolism of HSA-bound 15-keto-PGE(2), our data suggest that metabolism of HSA-bound prostaglandins may be a more complex and specific process than previously thought.  相似文献   

3.
Two distinct genotypes that result in the amino acid substitutions R218P and R218H in subdomain 2A of human serum albumin (HSA) have been identified as the cause of familial dysalbuminemic hyperthyroxinemia (FDH). These substitutions increase the affinity of subdomain 2A for thyroxine by approximately 10-fold elevating plasma thyroxine levels in affected individuals. While many studies have examined the binding of thyroxine to FDH HSA, the binding of FDH HSA to drugs has not been widely investigated. The widely administered drug warfarin was selected as a model compound to study FDH HSA/drug interactions since it binds to subdomain 2A and its pharmacokinetics are dramatically influenced by HSA binding. Using two independent methods, fluorescence spectroscopy and equilibrium dialysis with radioactive warfarin, the binding of recombinant R218P, R218H, R218M and wild type HSA to warfarin was measured. Both methods showed an approximately 5-fold decrease in the affinity of R218P, R218H and R218M HSA for warfarin relative to wild type HSA. The Kd values determined by fluorescence spectroscopy for wild type, R218H, R218P and R218M HSA binding to warfarin were 1.35, 5.38, 5.61, and 8.34 microM, respectively. The values determined by equilibrium dialysis were 5.36, 29.5, 14.5, and 23.4 microM, respectively. Based on the above findings one would expect the free serum warfarin concentration in homozygous R218P and R218H FDH patients to be elevated about 5-fold, resulting in about a 5-fold reduction in the serum half-life of the drug.  相似文献   

4.
Fatty acids are endogenous ligands of human serum albumin (HSA) that induce conformational changes and participate in allosteric ligand binding to HSA. In a previous study, we showed that, when myristate (MYR) is present, the binding of [(14) C]ketoprofen (KP) to subdomain IA of HSA was increased, indicating that, when MYR binds to HSA, a new binding site in formed in that region. Meanwhile, an N-B transition has been reported to increase the binding of ligands at alkaline pH when the status of albumin is the B-conformer. Six histidine single mutants of HSA, H9A, H39A, H67A, H105A, H128A and H146A were produced and photolabeled with [(14) C]KP at pH 6.5, 7.4 and 8.2 and the role of each histidine in causing the N-B transition induced allosteric ligand binding was examined. Cyanogen bromide cleavage of the photolabeled native HSA showed that subdomain IA was the site of the allosteric binding of KP at pH 8.2. From the photolabeling results, H146 was found to play a prominent role whilst H128 played little or no role in the allosteric binding. However, the remaining 4 mutants did not show a clear photolabeling pattern that was similar to either native HSA or H146A and, as a result, no firm conclusions can be made. An additional histidine mutant, H146I, was produced to confirm the results for H146A. A similar experiment using H146I showed that a benzene ring-like structure at position 146 is required for the allosteric ligand binding to occur.  相似文献   

5.
Human serum albumin (HSA) is a protein of 66.5 kDa that is composed of three homologous domains, each of which displays specific structural and functional characteristics. HSA is known to undergo different pH-dependent structural transitions, the N-F and F-E transitions in the acid pH region and the N-B transition at slightly alkaline pH. In order to elucidate the structural behavior of the recombinant HSA domains as stand-alone proteins and to investigate the molecular and structural origins of the pH-induced conformational changes of the intact molecule, we have employed fluorescence and circular dichroic methods. Here we provide evidence that the loosening of the HSA structure in the N-F transition takes place primarily in HSA-DOM III and that HSA-DOM I undergoes a structural rearrangement with only minor changes in secondary structure, whereas HSA-DOM II transforms to a molten globule-like state as the pH is reduced. In the pH region of the N-B transition of HSA, HSA-DOM I and HSA-DOM II experience a tertiary structural isomerization, whereas with HSA-DOM III no alterations in tertiary structure are observed, as judged from near-UV CD and fluorescence measurements.  相似文献   

6.
Fitos I  Visy J  Kardos J 《Chirality》2002,14(5):442-448
Kinetic and equilibrium binding studies were performed on the interaction of warfarin enantiomers with human serum albumin (HSA) in the absence and presence of lorazepam acetate (LoAc) enantiomers. Binding kinetics were followed by recording changes in the fluorescence of warfarin upon binding to HSA using the stopped-flow technique. The binding of (R)-warfarin displayed an exponentially increasing fluorescence, satisfying the two-step mechanism reported previously for the racemate, i.e., a diffusion controlled pre-equilibrium is followed by a slower rearrangement of the complex. In the case of (S)-warfarin, the signal was biphasic: a fast fluorescence enhancement was followed by a slow decline. The different kinetic features indicate that the equilibrium conformations of the [(S)-warfarin-HSA] and [(R)-warfarin-HSA] complexes are achieved via different mechanisms. The phenomenon was seen in buffers of different pH and compositions. Equilibrium binding measurements indicated significantly lower molar intrinsic fluorescence for the (S)-warfarin complex, suggesting differences in the microenvironments of the bound enantiomers. In the presence of (S)-LoAc, the allosterically enhanced binding of (S)-warfarin manifested itself in accelerated relaxation kinetics. In accordance with the low molar intrinsic fluorescence determined for the stable ternary complex, the amplitude of the decline in fluorescence became larger.  相似文献   

7.
Exposure of BR–albumin complexes to visible light at pH 8.0 led to a change in the fluorescence intensity at 525 nm, which was found to be different for different serum albumins. Whereas a complex of BR with human serum albumin (HSA) showed a marked increase in fluorescence upon photoirradiation, BR–sheep serum albumin (SSA) complex failed to produce a marked increase. On the other hand, a complex of pig serum albumin (PSA) with BR produced a remarkable decrease in fluorescence upon photoirradiation. Equilibration of these complexes with 20 mM chloroform for 1 h resulted in alteration in the photoinduced fluorescence. These photoinduced fluorescence modulations were found to be concentration dependent. Photoirradiation of BR–HSA complex led to a significant decrease in the positive CDCEs of the bisignate CD spectra in a time dependent manner that can be reconciled, to a significant extent, in the presence of chloroform. Taken together, all these results suggest that chiroptical properties/stability of albumin-bound BR varies with albumin species, protein concentration and the presence of chloroform.  相似文献   

8.
Human parainfluenza virus type 2 (HPIV-2), an important pediatric respiratory pathogen, encodes a V protein that inhibits type I interferon (IFN) induction and signaling. Using reverse genetics, we attempted the recovery of a panel of V mutant viruses that individually contained one of six cysteine-to-serine (residues 193, 197, 209, 211, 214, and 218) substitutions, one of two paired charge-to-alanine (R175A/R176A and R205A/K206A) substitutions, or a histidine-to-phenylalanine (H174F) substitution. This mutagenesis was performed using a cDNA-derived HPIV-2 virus that expressed the V and P coding sequences from separate mRNAs. Of the cysteine substitutions, only C193S, C214S, and C218S yielded viable virus, and only the C214S mutant replicated well enough for further analysis. The H174F, R175A/R176A, and R205A/K206A mutants were viable and replicated well. The H174F and R205A/K206A mutants did not differ from the wild-type (WT) V in their ability to physically interact with MDA5, a cytoplasmic sensor of nonself RNA that induces type I IFN. Like WT HPIV-2, these mutants inhibited IFN-β induction and replicated efficiently in African green monkeys (AGMs). In contrast, the C214S and R175A/R176A mutants did not bind MDA5 efficiently, did not inhibit interferon regulatory factor 3 (IRF3) dimerization or IFN-β induction, and were attenuated in AGMs. These findings indicate that V binding to MDA5 is important for HPIV-2 virulence in nonhuman primates and that some V protein residues involved in MDA5 binding are not essential for efficient HPIV-2 growth in vitro. Using a transient expression system, 20 additional mutant V proteins were screened for MDA5 binding, and the region spanning residues 175 to 180 was found to be essential for this activity.  相似文献   

9.
Genistein and daidzein, the major isoflavones present in soybeans, possess a wide spectrum of physiological and pharmacological functions. The binding of genistein to human serum albumin (HSA) has been investigated by equilibrium dialysis, fluorescence measurements, CD and molecular visualization. One mole of genistein is bound per mole of HSA with a binding constant of 1.5 +/- 0.2 x 10(5) m(-1). Binding of genistein to HSA precludes the attachment of daidzein. The ability of HSA to bind genistein is found to be lost when the tryptophan residue of albumin is modified with N-bromosuccinimide. At 27 degrees C (pH 7.4), van't Hoff's enthalpy, entropy and free energy changes that accompany the binding are found to be -13.16 kcal x mol(-1), -21 cal x mol(-1) K(-1) and -6.86 kcal x mol(-1), respectively. Temperature and ionic strength dependence and competitive binding measurements of genistein with HSA in the presence of fatty acids and 8-anilino-1-naphthalene sulfonic acid have suggested the involvement of both hydrophobic and ionic interactions in the genistein-HSA binding. Binding measurements of genistein with BSA and HSA, and those in the presence of warfarin and 2,3,5-tri-iodobenzoic acid and F?rster energy transfer measurements have been used for deducing the binding pocket on HSA. Fluorescence anisotropy measurements of daidzein bound and then displaced with warfarin, 2,3,5-tri-iodobenzoic acid or diazepam confirm the binding of daidzein and genistein to subdomain IIA of HSA. The ability of HSA to form ternery complexes with other neutral molecules such as warfarin, which also binds within the subdomain IIA pocket, increases our understanding of the binding dynamics of exogenous drugs to HSA.  相似文献   

10.
A dynamic model for bilirubin binding to human serum albumin   总被引:1,自引:0,他引:1  
Site-directed mutagenesis of human serum albumin was used to study the role of various amino acid residues in bilirubin binding. A comparison of thermodynamic, proteolytic, and x-ray crystallographic data from previous studies allowed a small number of amino acid residues in subdomain 2A to be selected as targets for substitution. The following recombinant human serum albumin species were synthesized in the yeast species Pichia pastoris: K195M, K199M, F211V, W214L, R218M, R222M, H242V, R257M, and wild type human serum albumin. The affinity of bilirubin was measured by two independent methods and found to be similar for all human serum albumin species. Examination of the absorption and circular dichroism spectra of bilirubin bound to its high affinity site revealed dramatic differences between the conformations of bilirubin bound to the above human serum albumin species. The absorption and circular dichroism spectra of bilirubin bound to the above human serum albumin species in aqueous solutions saturated with chloroform were also examined. The effect of certain amino acid substitutions on the conformation of bound bilirubin was altered by the addition of chloroform. In total, the present study suggests a dynamic, unusually flexible high affinity binding site for bilirubin on human serum albumin.  相似文献   

11.
The multi-domain enzyme isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix was studied by denaturant-induced unfolding. At pH 7.5, changes in circular dichroism ellipticity and intrinsic fluorescence showed a complex unfolding transition, whereas at pH 3.0, an apparently two-state and highly reversible unfolding occurred. Analytical ultracentrifugation revealed the dissociation from dimer to monomer at pH 3.0. The thermodynamic and kinetic stability were studied at pH 3.0 to explore the role of inter-domain interactions independently of inter-subunit interplay on the wild type and R211M, a mutant where a seven-membered inter-domain ionic network has been disrupted. The unfolding and folding transitions occurred at slightly different denaturant concentrations even after prolonged equilibration time. The difference between the folding and the unfolding profiles was decreased in the mutant R211M. The apparent Gibbs free energy decreased approximately 2 kcal/mol and the unfolding rate increased 4.3-fold in the mutant protein, corresponding to a decrease in activation free energy of unfolding of 0.86 kcal/mol. These results suggest that the inter-domain ionic network might be responsible for additional stabilization through a significant kinetic barrier in the unfolding pathway that could also explain the larger difference observed between the folding and unfolding transitions of the wild type.  相似文献   

12.
Firefly luciferase catalyses a two-step reaction, using ATP-Mg2+, firefly luciferin and molecular oxygen as substrates, leading to the efficient emission of yellow-green light. We report the identification of novel luciferase mutants which combine improved pH-tolerance and thermostability and that retain the specific activity of the wild-type enzyme. These were identified by the mutagenesis of solvent-exposed non-conserved hydrophobic amino acids to hydrophilic residues in Photinus pyralis firefly luciferase followed by in vivo activity screening. Mutants F14R, L35Q, V182K, I232K and F465R were found to be the preferred substitutions at the respective positions. The effects of these amino acid replacements are additive, since combination of the five substitutions produced an enzyme with greatly improved pH-tolerance and stability up to 45 degrees C. All mutants, including the mutant with all five substitutions, showed neither a decrease in specific activity relative to the recombinant wild-type enzyme, nor any substantial differences in kinetic constants. It is envisaged that the combined mutant will be superior to wild-type luciferase for many in vitro and in vivo applications.  相似文献   

13.
The information required for successful assembly of an icosahedral virus is encoded in the native conformation of the capsid protein and in its interaction with the nucleic acid. Here we investigated how the packing and stability of virus capsids are sensitive to single amino acid substitutions in the coat protein. Tryptophan fluorescence, bis-8-anilinonaphthalene-1-sulfonate fluorescence, CD and light scattering were employed to measure urea- and pressure-induced effects on MS2 bacteriophage and temperature sensitive mutants. M88V and T45S particles were less stable than the wild-type forms and completely dissociated at 3.0 kbar of pressure. M88V and T45S mutants also had lower stability in the presence of urea. We propose that the lower stability of M88V particles is related to an increase in the cavity of the hydrophobic core. Bis-8-anilinonaphthalene-1-sulfonate fluorescence increased for the pressure-dissociated mutants but not for the urea-denatured samples, indicating that the final products were different. To verify reassembly of the particles, gel filtration chromatography and infectivity assays were performed. The phage titer was reduced dramatically when particles were treated with a high concentration of urea. In contrast, the phage titer recovered after high-pressure treatment. Thus, after pressure-induced dissociation of the virus, information for correct reassembly was preserved. In contrast to M88V and T45S, the D11N mutant virus particle was more stable than the wild-type virus, in spite of it also possessing a temperature sensitive growth phenotype. Overall, our data show how point substitutions in the capsid protein, which affect either the packing or the interaction at the protein-RNA interface, result in changes in virus stability.  相似文献   

14.
The recently solved three-dimensional structure of the thermophilic esterase 2 from Alicyclobacillus acidocaldarius allowed us to have a snapshot of an enzyme-sulfonate complex, which mimics the second stage of the catalytic reaction, namely the covalent acyl-enzyme intermediate. The aim of this work was to design, by structure-aided analysis and to generate by site-directed and saturation mutagenesis, EST2 variants with changed substrate specificity in the direction of preference for monoacylesters whose acyl-chain length is greater than eight carbon atoms. Positions 211 and 215 of the polypeptide chain were chosen to introduce mutations. Among five variants with single and double amino acid substitutions, three were obtained, M211S, R215L, and M211S/R215L, that changed the catalytic efficiency profile in the desired direction. Kinetic characterization of mutants and wild type showed that this change was achieved by an increase in k(cat) and a decrease in K(m) values with respect to the parental enzyme. The M211S/R215L specificity constant for p-nitrophenyl decanoate substrate was 6-fold higher than the wild type. However, variants M211T, M211S, and M211V showed strikingly increased activity as well as maximal activity with monoacylesters with four carbon atoms in the acyl chain, compared with the wild type. In the case of mutant M211T, the k(cat) for p-nitrophenyl butanoate was 2.4-fold higher. Overall, depending on the variant and on the substrate, we observed improved catalytic activity at 70 degrees C with respect to the wild type, which was a somewhat unexpected result for an enzyme with already high k(cat) values at high temperature. In addition, variants with altered specificity toward the acyl-chain length were obtained. The results were interpreted in the context of the EST2 three-dimensional structure and a proposed catalytic mechanism in which k(cat), e.g. the limiting step of the reaction, was dependent on the acyl chain length of the ester substrate.  相似文献   

15.
Sac7d is a small chromatin protein from the hyperthermophile Sulfolobus acidocaldarius which kinks duplex DNA by approximately 66 degrees at a single base pair step with intercalation of V26 and M29 side chains. Site-directed mutagenesis coupled with calorimetric and spectroscopic data has been used to characterize the influence of the intercalating side chains on the structure and thermodynamics of the DNA complex from 5 to 85 degrees C. Two single-alanine substitutions (V26A and M29A) and five double-glycine, -alanine, -leucine, -phenylalanine, and -tryptophan substitutions of the surface residues have been created. NMR and fluorescence titrations indicated that the substitutions had little effect on the structure of the protein or DNA binding site size. Each of the mutant proteins demonstrated a temperature-dependent binding enthalpy which was correlated with a similar temperature dependence in the structure of the complex reflected by changes in fluorescence and circular dichroism. A positive heat capacity change (DeltaC(p)) for DNA binding was observed for only those mutants which also demonstrated a thermotropic structural transition in the complex, and the temperature range for the positive DeltaC(p) coincided with that observed for the structural transition. The thermodynamic data are interpreted using a model in which binding is linked to an endothermic distortion of the DNA in the complex. The results support the proposal that the unfavorable enthalpy of binding of Sac7d at 25 degrees C is due in part to the distortion of DNA.  相似文献   

16.
To investigate the function of subunit D in the vacuolar H(+)-ATPase (V-ATPase) complex, random and site-directed mutagenesis was performed on the VMA8 gene encoding subunit D in yeast. Mutants were selected for the inability to grow at pH 7.5 but the ability to grow at pH 5.5. Mutations leading to reduced levels of subunit D in whole cell lysates were excluded from the analysis. Seven mutants were isolated that resulted in pH-dependent growth but that contained nearly wild-type levels of subunit D and nearly normal assembly of the V-ATPase as assayed by subunit A levels associated with isolated vacuoles. Each of these mutants contained 2-3 amino acid substitutions and resulted in loss of 60-100% of proton transport and 58-93% of concanamycin-sensitive ATPase activity. To identify the mutations responsible for the observed effects on activity, 14 single amino acid substitutions and 3 double amino acid substitutions were constructed by site-directed mutagenesis and analyzed as described above. Six of the single mutations and all three of the double mutations led to significant (>30%) loss of activity, with the mutations having the greatest effects on activity clustering in the regions Val(71)-Gly(80) and Lys(209)-Met(221). In addition, both M221V and the double mutant V71D/E220V led to significant uncoupling of proton transport and ATPase activity, whereas the double mutant G80D/K209E actually showed increased coupling efficiency. Both a mutant showing reduced coupling and a mutant with only 6% of wild-type proton transport activity showed normal dissociation of the V-ATPase complex in vivo in response to glucose deprivation. These results suggest that subunit D plays an important role in coupling of proton transport and ATP hydrolysis and that only low rates of turnover of the enzyme are required to support in vivo dissociation.  相似文献   

17.
We studied the interaction of chaperonin GroEL with different misfolded forms of tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH): (1) GAPDH from rabbit muscles with all SH-groups modified by 5,5'-dithiobis(2-nitrobenzoate); (2) O-R-type dimers of mutant GAPDH from Bacillus stearothermophilus with amino acid substitutions Y283V, D282G, and Y283V/W84F, and (3) O-P-type dimers of mutant GAPDH from B. stearothermophilus with amino acid substitutions Y46G/S48G and Y46G/R52G. It was shown that chemically modified GAPDH and the O-R-type mutant dimers bound to GroEL with 1:1 stoichiometry and dissociation constants K(d) of 0.4 and 0.9 muM, respectively. A striking feature of the resulting complexes with GroEL was their stability in the presence of Mg-ATP. Chemically modified GAPDH and the O-R-type mutant dimers inhibited GroEL-assisted refolding of urea-denatured wild-type GAPDH from B. stearothermophilus but did not affect its spontaneous reactivation. In contrast to the O-R-dimers, the O-P-type mutant dimers neither bound nor affected GroEL-assisted refolding of the wild-type GAPDH. Thus, we suggest that interaction of GroEL with certain types of misfolded proteins can result in the formation of stable complexes and the impairment of chaperonin activity.  相似文献   

18.
Ethanol effects on warfarin binding to human serum albumin (HSA) have been studied by equilibrium dialysis and fluorescence methods at pH 7.4 in phosphate-buffered saline at 37 degrees C. In the presence of various amounts of ethanol fluorescence intensity of bound warfarin decreased significantly but this intensity reduction was not solely from displacement of bound warfarin from HSA. By comparing fluorescence and equilibrium dialysis data we concluded that fluorescence intensity reduction of warfarin was mainly the result of changes in the surrounding environment of the warfarin binding site by ethanol interaction with HSA and that displacement of bound warfarin was not significant compared to the fluorescence intensity changes. The dissociation constant of warfarin binding to HSA decreased with an increasing amount of ethanol. From the changes in fluorescence intensity upon warfarin binding to HSA with the presence of ethanol ranging from 0 to 5.0% the following dissociation constants (Kd) were determined: 0% ethanol 5.39 +/- 0.2 microM, 0.1% ethanol 5.86 +/- 0.1 microM, 0.3% ethanol 5.83 +/- 0.2 microM, 0.5% ethanol 6.76 +/- 0.1 microM, 1% ethanol 7.01 +/- 0.1 microM, 3% ethanol 9.9 +/- 0.7 microM, 5% ethanol 13.01 +/- 0.1 microM. From the equilibrium dialysis with the same ranges of ethanol presence the following Kd values were obtained: 0% ethanol 6. 62 +/- 1.6 microM, 0.1% ethanol 6.81 +/- 1.1 microM, 0.3% ethanol 8. 26 +/- 2.5 microM, 0.5% ethanol 8.86 +/- 1.9 microM, 1% ethanol 11. 01 +/- 4.2 microM, 3% ethanol 20.75 +/- 2.4 microM, 5% ethanol 21.67 +/- 2.2 microM. The results suggest that warfarin bound to HSA was displaced by ethanol. These data indicate that ethanol influence on warfarin binding to HSA may alter the pharmacokinetics of warfarin.  相似文献   

19.
The binding of drugs known to interact with area I on human serum albumin (HSA) was investigated using a chiral stationary phase obtained by anchoring HSA to a silica matrix. In particular, this high-pressure affinity chromatography selector was employed to study the binding properties of the individual enantiomers of warfarin. The pH and composition of the mobile phase modulate the enantioselective binding of warfarin. Displacement chromatography experiments evidenced significant differences in the binding of the warfarin enantiomers to site I. The (S)-enantiomer was shown to be a direct competitor for (R)-warfarin, while (R)-warfarin was an indirect competitor for the (S)-enantiomer. Salicylate directly competed with (R)-warfarin and indirectly with (S)-warfarin. This behavior was confirmed by difference CD experiments, carried out with the same [HSA]/[drug] system in solution.  相似文献   

20.
The binding of ofloxacin (OFLX) to human serum albumin (HSA) was investigated by fluorescence and circular dichroism (CD) techniques. The binding parameters have been evaluated by a fluorescence quenching method. Competitive binding measurements were performed in the presence of warfarin and ibuprofen and suggest binding to the warfarin site I of HSA. The distance r between donor (HSA) and acceptor (OFLX) was estimated according to the Forster's theory of non‐radiatiative energy transfer. CD spectra revealed that the binding of OFLX to HSA induced conformational changes in HSA. Molecular docking was performed and shows that for the lowest energy complex OFLX is located in site I of HSA, which correlate to the competitive binding experiments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号