首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Analysis of purified Na,K-ATPase from brine shrimp nauplii revealed two molecular forms of the alpha subunit separable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis [G.L. Peterson, R.D. Ewing, S.R. Hootman, and F.P. Conte (1978) J. Biol. Chem. 253:4762]. The molecular form with lower mobility is designated alpha 1 and the one with higher mobility, alpha 2, in a neutral or alkaline gel system. Differences in Na+-dependent, K+-sensitive phosphorylation of these two molecular forms have been investigated by directly measuring the radioactivity present in each phosphoprotein after separation of the two forms by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of Na+,Mg2+, and ATP, when the ATP concentration is above 1 microM, both alpha subunits are phosphorylated, although the phosphoprotein content of alpha 1 is considerably greater than that of alpha 2. Below 1 microM ATP, the phosphoprotein content of alpha 2 is even further reduced. These striking differences in phosphorylation at low ATP concentrations are not due to a greater instability of the alpha 2 phosphoprotein during the long electrophoresis times or during fixation, staining, and destaining. The proportion of total phosphoprotein content in alpha 2, as well as the relationship between phosphoprotein content and ATP concentration, is unchanged when the radioactive analysis is performed on frozen gels that have been electrophoresed for shorter times, even though the actual amount of phosphorylation is 15 times greater than with fixed gels. Since the concentration of alpha 1 and alpha 2 vary during development [G.L. Peterson, L. Churchill, J.A. Fisher, and L.E. Hokin (1982) J. Exp. Zool. 221:295], the differences in phosphorylation may be relevant to differences in Na,K-ATPase activity during different development stages.  相似文献   

2.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis with 6% polyacrylamide was used to resolve the 100-kDa catalytic (alpha subunit) polypeptide of (Na+ + K+)-adenosinetriphosphatase from various tissues. The catalytic subunit was identified on immunoblots with antisera against mouse brain catalytic subunit and lamb kidney holoenzyme. Immunoblots and Coomassie Blue-stained companion gels showed double species of the 100-kDa subunit in sucrose gradient fractions of mouse brain and kidney, bovine grey and white matter, purified lamb kidney and duck salt gland holoenzyme, electroplax microsomes, and NaI-extracted microsomes of goldfish and rat brain. The apparent molecular mass differences between the two species in each tissue all ranged between 5 and 8 kDa. Both forms in rat brain and lamb kidney enzyme contain common epitopes reactive with antibodies immunoaffinity-purified on either species from mouse brain. In addition, ouabain-dependent acid-stable inorganic phosphate incorporation was tested with mouse brain, lamb kidney, and electroplax enzyme. Ouabain-dependent phosphorylation was demonstrated in both species in lamb kidney and electroplax and in the larger of the two forms in mouse brain. These results suggest that double species of the phosphorylatable subunit are present generally in epithelial as well as excitable tissues and in fish and avian as well as mammalian species. Work is needed to elucidate their qualitative and quantitative characteristics in different tissues.  相似文献   

3.
Zinc ion in micromolar concentrations is an irreversible inhibitor of Electrophorus electricus electroplax microsomal (Na+-K+)-ATPase. The rate of inhibition is dependent on [ZnCl2] and the extent of inhibition varies with the ratio of ZnCl2 to microsomal protein. The same kinetics are observed for inhibition of K+ -p-nitrophenylphosphatase and steady-state levels of Na+ -dependent enzyme phosphorylation. The observations suggest that a Zn2+ -sensitive conformational restraint is important to both kinase and phosphatase activities. The fact that inhibition is irreversible has implications for models seeking to relate zinc effects in tissue to inhibition of (Na+-K+)-ATPase.  相似文献   

4.
The myelin-deficient Shiverer (Shi/Shi) mutant mouse may be a useful model in assessing the dependence of brain (Na++K+)-ATPase concentration and composition on myelin membrane formation. Brain microsomal membranes from age-matched control (+/+) and Shiverer (Shi/Shi) mice were fractionated by differential centrifugation and sucrose gradient sedimentation. No reduction in (Na++K+)-ATPase specific activity was measured in whole homogenates, high-and low-speed fractions or gradient fractions from brains of Shi/Shi mice as compared to those of +/+ mice. In addition, sodium dodecylsulfatepolyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting with antisera specific for mouse brain (Na++K+)-ATPase revealed no significant difference in catalytic subunit composition between fractions of +/+ and Shi/Shi brains. The similar results obtained for both +/+ and myelin-deficient Shi/Shi mice suggest that myelin contributes little to total brain (Na++K+)-ATPase.  相似文献   

5.
Enzymes catalyze essential chemical reactions needed for living processes. (Na+ +K+)-ATPase (NKA) is one of the key enzymes that control intracellular ion homeostasis and regulate cardiac function. Little is known about activation of NKA and its biological impact. Here we show that native activity of NKA is markedly elevated when protein-protein interaction occurs at the extracellular DVEDSYGQQWTYEQR (D-R) region in the alpha-subunit of the enzyme. The apparent catalytic turnover of NKA is approximately twice as fast as the controls for both ouabain-resistant and ouabain-sensitive enzymes. Activation of NKA not only markedly protects enzyme function against denaturing, but also directly affects cellular activities by regulating intracellular Ca2+ transients and inducing a positive inotropic effect in isolated rat cardiac myocytes. Immunofluorescent labeling indicates that the D-R region of NKA is not a conventional digitalis-binding site. Our findings uncover a novel activation site of NKA that is capable of promoting the catalytic function of the enzyme and establish a new concept that activating of NKA mediates cardiac contraction.  相似文献   

6.
When the effects of varying concentrations of ATP on the dissociation rate of the ouabain-enzyme complex were studied, the dissociation rate constant increased with increasing ATP concentrations up to 1 mM, and then decreased with further rise in ATP; indicating that ATP binds to two distinct sites on the complex. ADP and AMP-PNP had similar biphasic effects. GTP, CTP, UTP, and AMP-PCP reduced the dissociation rate. AMP and Pi had no effects. Increase in dissociation rate caused by 0.5 mM ATP was not abolished by saturating CTP, indicating the binding of CTP to only one of the two ATP sites. The data suggest the existence of separate catalytic and regulatory sites, with different affinities and nucleotide specificities.  相似文献   

7.
8.
9.
10.
The phosphorylation of two isozymes (alpha(+) and alpha) of (Na+ + K+)-ATPase by 32Pi was studied under equilibrium conditions in various enzyme preparations from rat medulla oblongata, rat cerebral cortex, rat cerebellum, rat kidney, guinea pig kidney, and rabbit kidney. In ouabain-sensitive (Na+ + K+)-ATPases such as the brain, guinea pig kidney, and rabbit kidney enzymes, ouabain stimulated the Mg2+-dependent phosphorylation at lower concentrations, while a higher concentration was required for the stimulation of rat kidney (Na+ + K+)-ATPase, an ouabain-insensitive enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that two isozymes of the brain (Na+ + K+)-ATPase were also phosphorylated by 32Pi in the presence of ouabain. The properties of the phosphorylation were compared between the medullar oblongata (referred to as alpha(+] and the kidney (referred to as alpha) (Na+ + K+)-ATPases. The steady-state level of phosphorylation was achieved faster in the kidney enzymes than in the medulla oblongata enzyme. Phosphorylation without ouabain was greater in the kidney enzymes than in the brain enzymes. Furthermore, the former enzymes were inhibited by K+ much more than the latter. These findings suggest that the two isozymes of (Na+ + K+)-ATPase differ in their conformational changes during enzyme turnover.  相似文献   

11.
Antibodies against Lubrol-solubilized Electrophorus electroplax (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) and its 96 000-dalton polypeptide (P96) were raised in rabbits. The P96 antibody does not cross react with the (Na+ + K+)-ATPase from mammalian species and tissues, but it cross reacts with the (Na+ + K+)-ATPase from both Electrophorus electroplax and brain. The combination of enzyme with anti-P96 is found to inhibit phosphoryl enzyme formation to the same extent that it inhibits enzyme activity. The rate of K+-sensitive dephosphorylation of phosphoryl enzyme appears to be unchanged. These are also found to be true with the antibody against the whole enzyme. Upon tryptic digestion of the enzyme-anti-P96 complex only the large polypeptide of the enzyme is protected. In the case of enzyme-anti-Lubrol-solubilized enzyme complex, both the large and small polypeptides are protected, whereas preimmune sera are without any protecting effect. The data indicate that the phosphoryl acceptor polypeptide and the Lubrol-solubilized electroplax (Na+ + K+)-ATPase from which the polypeptide is derived are phylogenetically distinct from those of the mammalian (Na+ + K+)-ATPases. The selective tryptic resistance of the enzyme-anti-P96 complex indicates that the two polypeptides are spatially well separated, possibly on opposite sides of the membrane.  相似文献   

12.
The effect of phospholipase C on two isozymes (alpha (+) and alpha forms) of rat brain (Na+ + K+)-ATPase and the temperature-dependence of their activities were investigated. Phospholipase C from Clostridium welchii inhibited the activities of the enzymes treated with and without pyrithiamin or N-ethylmaleimide, a preferential inhibitor of the alpha (+) form, but the extent of the inhibition was higher in the control enzyme than in the treated enzymes. The treatment of the (Na+ + K+)-ATPase with phospholipase C altered a ratio between high- and low-affinity components for ouabain inhibition. It also caused the similar change in a ratio between the alpha (+) and alpha forms of Na+-stimulated phosphorylation from [gamma-32P]ATP. These findings indicate that the alpha (+) form of rat brain (Na+ + K+)-ATPase is more sensitive to phospholipase C than the alpha form. Analysis of Arrhenius plots of the activities of the control and pyrithiamin-treated enzymes showed that there was a difference between the two enzymes in a break point. We suggest that two isozymes of rat brain (Na+ + K+)-ATPase differ in the interaction with phospholipids or in the lipid-environment.  相似文献   

13.
14.
The number of K+ bound to the (Na+ + K+)-ATPase has been measured under equilibrium conditions by a differential-titration technique (Hastings, D.F. (1977) Anal. Biochem. 83, 416-432). 5.1 K+ were bound per 32P-labelling site. The K'D for K+ was dependent on the concentration of choline, which was included to give ionic strength. K'D was 59 +/- 2.5 microM with 97 mM choline, 26 +/-1.9 microM with 30 mM choline. The K+ : choline selectivity was 2564 : 1 and the calculated K'D for K+ with zero choline was 11 microM and for choline with zero K+ was 28 mM. 20 microM ATP in the presence of 97 mM choline incresed the K'D for potassium 3-fold to 177 +/- 14 microM. The K'D for K+ with 3 mM Na+ in the presence of 27 mM choline was 81 +/- 10 microM and with 30 mM Na+ without choline 700 +/- 250 microM. The calculated K'D for Na+ at zero K+ and zero choline was 0.6 +/- 0.2 mM. The K+ : Na+ selectivity was 54 : 1.  相似文献   

15.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+)-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907-5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl-. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

16.
No alteration in the circular dichroic spectrum of fully active, membrane-bound (Na+ + K+)-ATPase is observed when the protein is cycled between the two major conformational states, E1 and E2. This finding is in agreement with the infrared study by Chetverin and Brazhnikov (J. Biol. Chem. 260 (1985) 7817) and demonstrates that any difference in secondary structure between the two conformers must be less than 2%.  相似文献   

17.
The (Na+ and K+)-stimulated adenosine triphosphatase (Na+,K+)-ATPase) from canine kidney reconstituted into phospholipid vesicles showed an ATP-dependent, ouabain-inhibited uptake of 22Na+ in the absence of added K+. This transport occurred against a Na+ concentration gradient, was not affected by increasing the K+ concentration to 10 microM (four times the endogenous level), and could not be explained in terms of Na+in in equilibrium Na+out exchange. K+-independent transport occurred with a stoichiometry of 0.5 mol of Na+ per mol of ATP hydrolyzed as compared with 2.9 mol of Na+ per mol of ATP for K+-dependent transport.  相似文献   

18.
19.
Crystallization patterns of membrane-bound (Na+ +K+)-ATPase   总被引:6,自引:0,他引:6  
Extensive formation of two-dimensional crystals of the proteins of the pure membrane-bound (Na+ +K+)-ATPase is induced during prolonged incubation with vanadate and magnesium. Some membrane crystals are formed in medium containing magnesium and phosphate. Computer-averaged images of the two-dimensional crystals show that the unit cell in vanadate-induced crystals contains a protomeric alpha beta-unit of the enzyme protein. In phosphate-induced crystals an (alpha beta) 2-unit occupies one unit cell suggesting the interactions between alpha beta-units can be of importance in the function of the Na+, K+ pump.  相似文献   

20.
Extensive formation of two-dimensional crystals of the proteins of the pure membrane-bound (Na+ + K+)-ATPase is induced during prolonged incubation with vanadate and magnesium. Some membrane crystals are formed in medium containing magnesium and phosphate. Computer-averaged images of the two-dimensional crystals show that the unit cell in vanadate-induced crystals contains a protomeric αβ-unit of the enzyme protein. In phosphate-induced crystals an (αβ)2-unit occupies one unit cell suggesting that interactions between αβ-units can be of importance in the function of the Na+, K+ pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号