首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although various tissue macrophages possess high glucose-6-phosphate dehydrogenase (G6PD) activity, which is reported to be closely associated with their phagocytotic/bactericidal function, the fine subcellular localization of this enzyme in liver resident macrophages (Kupffer cells) has not been determined. We have investigated the subcellular localization of G6PD in Kupffer cells in rat liver, using a newly developed enzyme-cytochemical (copper-ferrocyanide) method. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of Kupffer cells. Cytochemical controls ensured specific detection of the enzymatic activity. Rat Kupffer cells abundantly possessed enzyme-cytochemically detectable G6PD activity. Kupffer cell G6PD may play a role in liver defense by delivering NADPH to NADPH-dependent enzymes. G6PD enzyme-cytochemistry may be a useful tool for the study of Kupffer cell functions.  相似文献   

2.
Acid phosphatase (ACPase) and glucose-6-phosphate dehydrogenase (G6PD) play important roles in cell biology/disease pathophysiology in various organs including the liver. The purpose of the present report is to introduce a new enzymecytochemical method to simultaneously demonstrate the subcellular localization of ACPase and G6PD within the same hepatocyte in the mouse liver. The ultrastructural localization of ACPase and G6PD were demonstrated, with concomitant use of the cerium method and the copper-ferrocyanide method, respectively. ACPase labelings were localized in the lysosomes, and G6PD labelings were visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of the hepatocyte. This novel double staining procedure may be a useful histochemical tool for the study of liver functions in both physiological and pathological conditions.  相似文献   

3.
4.
Glucose-6-phosphate dehydrogenase (G6PD) is the key enzyme of the pentose phosphate pathway in carbohydrate metabolism, and it plays an important role in cell proliferation and antioxidant regulation within cells in various organs. Although marked cell proliferation and oxidant/antioxidant metabolism occur in lung alveolar epithelial cells, definite data has been lacking as to whether cytochemically detectable G6PD is present in alveolar epithelial cells. The distribution pattern of G6PD within these cells, if it is present, is also unknown. The purpose of the present study was to investigate the subcellular localization of G6PD in alveolar cells in the rat lung using a newly-developed enzyme-cytochemistry (copper-ferrocyanide) method. Type I cells and stromal endothelia and fibroblasts showed no activities. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of type II alveolar epithelial cells. The cytochemical controls ensured specific detection of enzyme activity. This enzyme may play a role in airway defense by delivering substances for cell proliferation and antioxidant forces, thus maintaining the airway architecture.  相似文献   

5.
Glucose-6-phosphate dehydrogenase (G6PD) is a ubiquitous enzyme catalyzing the oxidation of D-glucose 6-phosphate to D-glucono —lactone 6-phosphate, in the first step of the pentose phosphate pathway. Based on the currently available structural information on Leuconostoc mesenteroides G6PD, it is believed that the enzyme only works as a homodimer. Here we show that both after non-denaturing and after denaturing electrophoretic separation (SDS-PAGE) and blotting L. mesenteroides G6PD retains its complete catalytic activity. In the two latter cases the molecular weight of the band corresponded to that of a G6PD monomer. Conversely, when the same technique was applied to G6PD from Saccharomyces cerevisiae, another fermentative organism, the monomer activity was not detectable after SDS-PAGE and blotting. The results are discussed in terms of molecular evolution of the oligomeric state in the various G6PD sources.  相似文献   

6.
Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) is the key regulatory enzyme of the pentose phosphate pathway and produces NADPH and riboses. In this study, the kinetic properties of G6PD activity were determined in situ in chemically induced hepatocellular carcinomas, and extralesional and control parenchyma in rat livers and were directly compared with those of the second NADPH-producing enzyme of the pentose phosphate pathway, phosphogluconate dehydrogenase (PGD). Distribution patterns of G6PD activity, protein, and mRNA levels were also compared to establish the regulation mechanisms of G6PD activity. In (pre)neoplastic lesions, the V(max) of G6PD was 150-fold higher and the K(m) for G6P was 10-fold higher than in control liver parenchyma, whereas in extralesional parenchyma, the V(max) was similar to that in normal parenchyma but the K(m) was fivefold lower. This means that virtual fluxes at physiological substrate concentrations are 20-fold higher in lesions and twofold higher in extralesional parenchyma than in normal parenchyma. The V(max) of PGD was fivefold higher in lesions than in normal and extralesional liver parenchyma, whereas the K(m) was not affected. Amounts of G6PD protein and mRNA were similar in lesions and in extralesional liver parenchyma. These results demonstrate that G6PD is strongly activated post-translationally in (pre)neoplastic lesions to produce NADPH.  相似文献   

7.
Glucose-6-phosphate dehydrogenase (G6PD), the rate limiting enzyme that channels glucose catabolism from glycolysis into the pentose phosphate pathway (PPP), is vital for the production of reduced nicotinamide adenine dinucleotide phosphate (NADPH) in cells. NADPH is in turn a substrate for glutathione reductase, which reduces oxidized glutathione disulfide to sulfhydryl glutathione. Best known for inherited deficiencies underlying acute hemolytic anemia due to elevated oxidative stress by food or medication, G6PD, and PPP activation have been associated with neuroprotection. Recent works have now provided more definitive evidence for G6PD's protective role in ischemic brain injury and strengthened its links to neurodegeneration. In Drosophila models, improved proteostasis and lifespan extension result from an increased PPP flux due to G6PD induction, which is phenocopied by transgenic overexpression of G6PD in neurons. Moderate transgenic expression of G6PD was also shown to improve healthspan in mouse. Here, the deciphered and implicated roles of G6PD and PPP in protection against brain injury, neurodegenerative diseases, and in healthspan/lifespan extensions are discussed together with an important caveat, namely NADPH oxidase (NOX) activity and the oxidative stress generated by the latter. Activation of G6PD with selective inhibition of NOX activity could be a viable neuroprotective strategy for brain injury, disease, and aging.  相似文献   

8.
Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first step of the pentose phosphate pathway which generates NADPH for anabolic pathways and protection systems in liver. G6PD was purified from dog liver with a specific activity of 130 U x mg(-1) and a yield of 18%. PAGE showed two bands on protein staining; only the slower moving band had G6PD activity. The observation of one band on SDS/PAGE with M(r) of 52.5 kDa suggested the faster moving band on native protein staining was the monomeric form of the enzyme.Dog liver G6PD had a pH optimum of 7.8. The activation energy, activation enthalpy, and Q10, for the enzymatic reaction were calculated to be 8.96, 8.34 kcal x mol(-1), and 1.62, respectively.The enzyme obeyed "Rapid Equilibrium Random Bi Bi" kinetic model with Km values of 122 +/- 18 microM for glucose-6-phosphate (G6P) and 10 +/- 1 microM for NADP. G6P and 2-deoxyglucose-6-phosphate were used with catalytic efficiencies (kcat/Km) of 1.86 x 10(6) and 5.55 x 10(6) M(-1) x s(-1), respectively. The intrinsic Km value for 2-deoxyglucose-6-phosphate was 24 +/- 4mM. Deamino-NADP (d-NADP) could replace NADP as coenzyme. With G6P as cosubstrate, Km d-ANADP was 23 +/- 3mM; Km for G6P remained the same as with NADP as coenzyme (122 +/- 18 microM). The catalytic efficiencies of NADP and d-ANADP (G6P as substrate) were 2.28 x 10(7) and 6.76 x 10(6) M(-1) x s(-1), respectively. Dog liver G6PD was inhibited competitively by NADPH (K(i)=12.0 +/- 7.0 microM). Low K(i) indicates tight enzyme:NADPH binding and the importance of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

9.
Colonna-Romano  S.  Iolascon  A.  Lippo  S.  Pinto  L.  Cutillo  S.  Battistuzzi  G. 《Human genetics》1985,69(3):228-232
Summary Glucose-6-phosphate dehydrogenase (G6PD) electrophoretic phenotype was determined in red cells from 979 male subjects born in Naples (Southern Italy). In 0.7% of the cases no activity could be detected in haemolysates, while in 1.3% of the cases G6PD activity was approximately 20% of normal and electrophoretic mobility was altered. Moveover in two subjects a G6PD with altered mobility and normal activity was shown. G6PD was characterized in 10 subjects with variant phenotype. We conclude that the G6PD(-) phenotype in the population of Naples consists of at least six different G6PD variants associated with mild deficiency and at least one, G6PD Mediterranean, associated with severe deficiency.  相似文献   

10.
Immature rat ovarian dehydrogenase activity was studied during corpus luteum regression following withdrawal of prior pregnant mare serum gonadotrophin. Glucose-6-phosphate dehydrogenase activity declined to nontreatment levels whereas 6-phosphogluconate, malate, and isocitrate dehydrogenase dehydrogenases exhibited a partial return to normal. Adrenalectomy prior to PMS withdrawal enhanced the decline in MAD while sharply elevating G6PD and 20alpha-hydroxysteroid dehydrogenase. Corticosterone and progesterone prevented the G6PD changes induced by adrenalectomy and moderated the rise in 20alpha-OHSD. Adrenalectomy appears to enhance the process of luteolysis.  相似文献   

11.
Glucose-6-phosphate dehydrogenase (G6PD), the first enzyme of the pentose phosphate pathway, is the principal intracellular source of NADPH. NADPH is utilized as a cofactor by vascular endothelial cell nitric-oxide synthase (eNOS) to generate nitric oxide (NO*). To determine whether G6PD modulates NO*-mediated angiogenesis, we decreased G6PD expression in bovine aortic endothelial cells using an antisense oligodeoxynucleotide to G6PD or increased G6PD expression by adenoviral gene transfer, and we examined vascular endothelial growth factor (VEGF)-stimulated endothelial cell proliferation, migration, and capillary-like tube formation. Deficient G6PD activity was associated with a significant decrease in endothelial cell proliferation, migration, and tube formation, whereas increased G6PD activity promoted these processes. VEGF-stimulated eNOS activity and NO* production were decreased significantly in endothelial cells with deficient G6PD activity and enhanced in G6PD-overexpressing cells. In addition, G6PD-deficient cells demonstrated decreased tyrosine phosphorylation of the VEGF receptor Flk-1/KDR, Akt, and eNOS compared with cells with normal G6PD activity, whereas overexpression of G6PD enhanced phosphorylation of Flk-1/KDR, Akt, and eNOS. In the Pretsch mouse, a murine model of G6PD deficiency, vessel outgrowth from thoracic aorta segments was impaired compared with C3H wild-type mice. In an in vivo Matrigel angiogenesis assay, cell migration into the plugs was inhibited significantly in G6PD-deficient mice compared with wild-type mice, and gene transfer of G6PD restored the wild-type phenotype in G6PD-deficient mice. These findings demonstrate that G6PD modulates angiogenesis and may represent a novel angiogenic regulator.  相似文献   

12.
A Watanabe 《Enzyme》1977,22(5):322-329
Hexose-6-phosphate dehydrogenase (H6PD) in rat liver microsomes was clearly differentiated kinetically, immunologically and electrophoretically from glucose-6-phosphate dehydrogenase (G6PD) localized in liver supernatants. Although the soluble G6PD activity increased upon liver injuries induced by CCl4 and thioacetamide, the H6PD activity decreased markedly 1-2 days following administrations of these hepatotoxins. The specific activity of H6PD remained fairly constant under other experimental conditions where the levels of the soluble G6PD activity increased.  相似文献   

13.
Recent studies have shown that hyperglycemia is a principal cause of cellular damage in patients with diabetes mellitus. A major consequence of hyperglycemia is increased oxidative stress. Glucose-6-phosphate dehydrogenase (G6PD) plays an essential role in the regulation of oxidative stress by primarily regulating NADPH, the main intracellular reductant. In this paper we show that increased glucose (10-25 mm) caused inhibition of G6PD resulting in decreased NADPH levels in bovine aortic endothelial cells (BAEC). Inhibition was seen within 15 min. High glucose-induced inhibition of G6PD predisposed cells to cell death. High glucose via increased activity of adenylate cyclase also stimulated an increase in cAMP levels in BAEC. Agents that increased cAMP caused a decrease in G6PD activity. Inhibition of cAMP-dependent protein kinase A ameliorated the high glucose-induced inhibition of G6PD. Finally, high glucose stimulated phosphorylation of G6PD. These results suggest that, in BAEC, high glucose stimulated increased cAMP, which led to increased protein kinase A activity, phosphorylation of G6PD, and inhibition of G6PD activity. We conclude that these changes in G6PD activity play an important role in high glucose-induced cell damage/death.  相似文献   

14.
The erythrocyte glucose 6-phosphate dehydrogenase activity characteristic of each of 16 inbred mouse strains falls into one of three distinct classes. Strains C57L/J and C57BR/cdJ represent the low activity class: strains A/J and A/HeJ represent the high activity class; other strains have intermediate activities. There is no evidence that structural variation is responsible for the variation in G6PD activity, since partially purified enzyme from each class has the same thermal stability, pH-activity profile, Michaelis constants for G6P and NADP, electrophoretic mobility, and activity using 2-deoxy d-glucose 6-phosphate as substrate. The activities of 6-phosphogluconate dehydrogenase and glucose phosphate isomerase do not differ in erythrocytes of the three G6PD activity classes. Young red cells have higher G6PD activities than old red cells and there is evidence that the intracellular stability of the enzyme is reduced in red cells of strain C57L/J. G6PD activities in kidney and skeletal and cardiac muscle from animals with low red cell G6PD are slightly lower than the activities in kidney and muscle from animals with high red cell G6PD activity. The quantitative differences in red cell G6PD activity are not regulated by X-linked genes, but by alleles at two or more autosomal loci. A simple genetic model is proposed in which alleles at two unlinked, autosomal loci, called Gdr-1 and Gdr-2 regulate G6PD activity in the mouse erythrocyte.  相似文献   

15.
J Peters  S T Ball 《Genetical research》1990,56(2-3):245-252
Glucose-6-phosphate dehydrogenase (G6PD) activity was measured in blood from heterozygotes for the normal allele G6pda and the low activity allele G6pda-mlNeu. In adult mice lower activity was found in G6pda/G6pda-mlNeu than in the reciprocal heterozygote G6pda-mlNeu/G6pda (the maternal allele being listed first). Thus, either the paternally derived allele was over-expressed or the maternally derived allele was under-expressed. By contrast, in younger mice the difference in G6PD activity in reciprocal crosses was less marked. The findings are interpreted in terms of differential imprinting of maternally and paternally inherited information. The explanation offered for age related differences is that, as a consequence of imprinting, either the paternal X-chromosome is preferentially reactivated, or cells in which the paternally derived allele is active are at a selective advantage, and proliferate better than those in which the maternally inherited allele is active.  相似文献   

16.
Epidermal growth factor (EGF), a mitogen for renal proximal tubule cells, activated the hexose monophosphate (HMP) shunt in renal proximal tubule cells (Stanton, R. C., and Seifter, J. L. (1988) Am. J. Physiol. 254, C267-C271). We therefore evaluated the effect of EGF on the HMP shunt enzymes glucose 6-phosphate dehydrogenase (G6PD, the rate-limiting enzyme) and 6-phosphogluconate dehydrogenase. Rat renal cortical cells (RCC) were incubated with either EGF or platelet-derived growth factor (PDGF) and then assayed for G6PD and 6-phosphogluconate dehydrogenase activities. EGF and PDGF increased G6PD activity by 25 and 27% respectively. Although phorbol myristate acetate (PMA), ionomycin, PMA + ionomycin, and 8-bromo-cyclic AMP had no significant effect on the activity, a 5-min preincubation with PMA potentiated the activation of G6PD by PDGF. Growth factor activation of G6PD was also seen in a fibroblast and epithelial cell line. None of the agents affected 6-phosphogluconate dehydrogenase activity in the RCC or in the cell lines. Further exploration into a possible mechanism for G6PD activation revealed that growth factors caused release of G6PD from a structural element within the cell. Streptolysin O permeabilization of RCC did not cause significant release of G6PD. However, within 1 min of addition of EGF or PDGF to permeabilized cells, G6PD was released into the cell supernatant. The nonhydrolyzable analog of GTP, guanosine 5'-O-(thiotriphosphate), caused a similar release of G6PD. Preincubation with pertussis toxin or guanyl-5'-yl thiophosphate inhibited the PDGF but not the EGF effect. Although the data do not establish a definitive proof linking G6PD release and G6PD activation, these results suggest that they are related. Thus, growth factor stimulation of the HMP shunt likely occurs by a novel mechanism associated with release of bound G6PD.  相似文献   

17.
Glucose-6-phosphate dehydrogenase (G6PD) was purified from rat small intestine with 19.2% yield and had a specific activity of 53.8 units per miligram protein. The pH optimum was determined to be 8.1. The purified rat small intestinal G6PD gave one activity, one protein band on native PAGE. The observation of one band on SDS/PAGE with an Mr of 48 kDa and a specific activity lower than expected may suggest the proteolytically affected enzyme or different form of G6PD in the rat small intestine. The activation energy, activation enthalpy, Q10, and optimum temperature from Arrhenius plot for the rat small intestinal G6PD were found to be 8.52 kcal/mol, 7.90 kcal/mol, 1.59, and 38 degrees C, respectively. The Km values for G6P and NADP+ were 70.1 +/- 20.8 and 23.2 +/- 7.6 microM, respectively. Double-reciprocal plots of 1/Vm versus 1/G6P (at constant [NADP+]) and of 1/Vm versus 1/NADP+ at constant [G6P]) intersected at the same point on the 1/Vm axis to give Vm = 53.8 U/mg protein.  相似文献   

18.
Glucose-6-phosphate dehydrogenase was purified from human placenta using DEAE-Sepharose fast flow, 2',5'-ADP Sepharose 4B column chromatography, and chromatofocusing on PBE 94 with PB 74. The enzyme was purified with 62% yield and had a specific activity of 87 units per milligram protein. The pH optimum was determined to be 7.8, using zero buffer extrapolation method. The purified placental glucose-6-phosphate dehydrogenase gave two activity bands on native PAGE: one band, constituting about 3--5% of total activity, moved slower than the remaining 95%. Among the activity bands only the faster moving band gave a band on protein staining. The slower moving band, which probably corresponded to the higher polymeric form of the G6PD with high specific activity, was not seen on native PAGE due to insufficient protein for Coomassie brilliant blue staining. The observation of one band on SDS--PAGE with an M(r) of 54 kDa and a specific activity lower than expected, suggests the presence of both forms of the G6PD, the high polymeric form at low concentration and the inactive form at high concentration, in our preparation. Measuring the activities of placental glucose-6-phosphate dehydrogenase between 20 and 50 degrees C, the activation energy, activation enthalpy, and Q(10) were calculated to be 8.16 kcal/mol, 7.55 kcal/mol, and 1.57, respectively. It was found that human placental G6PD obeys Michaelis-Menten kinetics. K(m) values were determined using the concentration ranges of 20--300 microM for G6P and 10--200 microM for NADP(+). The K(m) value for G6P was 40 microM; the K(m) value NADP(+) was found to be 20 microM. Double-reciprocal plots of 1/Vm vs 1/G6P (at constant [NADP(+)]) and of 1/Vm vs 1/NADP(+) (at constant [G6P]) intersected at the same point on the 1/V(m) axis to give V(m) = 87 U/mg protein.  相似文献   

19.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency was identified in two children who were studied because of hemolytic episodes. The electrophoretic and kinetic properties of the mutant enzymes allowed us to conclude that both of them were new variants. They were named G6PD Guantánamo and G6PD Caujerí.  相似文献   

20.
Glucose-6-phosphate and 6-phosphogluconate dehydrogenases (G6PD and 6PGD) are revealed in Amoeba proteus by electrophoresis in polyacrylamide gels, thus proving the availability of the phosphogluconic pathway in amoebae. 6PGD is marked as a single band, and G6PD shows multiple banding. When an amoebic homogenate is obtained using Triton-100, a supplementary form of G6PD extracted from membranes of some cell organelles (presumably mitochondria) becomes apparent. Hexose-6-phosphate dehydrogenase seems to be absent and therefore all the G6PD forms found may be specific G6PDs proper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号