首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sigmaK checkpoint coordinates gene expression in the mother cell with signaling from the forespore during Bacillus subtilis sporulation. The signaling pathway involves SpoIVB, a serine peptidase produced in the forespore, which is believed to cross the innermost membrane surrounding the forespore and activate a complex of proteins, including BofA, SpoIVFA, and SpoIVFB, located in the outermost membrane surrounding the forespore. Activation of the complex allows proteolytic processing of pro-sigmaK, and the resulting sigmaK RNA polymerase transcribes genes in the mother cell. To investigate activation of the pro-sigmaK processing complex, the level of SpoIVFA in extracts of sporulating cells was examined by Western blot analysis. The SpoIVFA level decreased when pro-sigmaK processing began during sporulation. In extracts of a spoIVB mutant defective in forespore signaling, the SpoIVFA level failed to decrease normally and no processing of pro-sigmaK was observed. Although these results are consistent with a model in which SpoIVFA inhibits processing until the SpoIVB-mediated signal is received from the forespore, we discovered that loss of SpoIVFA was insufficient to allow processing under certain conditions, including static incubation of the culture and continued shaking after the addition of inhibitors of oxidative phosphorylation or translation. Under these conditions, loss of SpoIVFA was independent of spoIVB. The inability to process pro-sigmaK under these conditions was not due to loss of SpoIVFB, the putative processing enzyme, or to a requirement for ongoing synthesis of pro-sigmaK. Rather, it was found that the requirements for shaking of the culture, for oxidative phosphorylation, and for translation could be bypassed by mutations that uncouple processing from dependence on forespore signaling. This suggests that ongoing translation is normally required for efficient pro-sigmaK processing because synthesis of the SpoIVB signal protein is needed to activate the processing complex. When translation is blocked, synthesis of SpoIVB ceases, and the processing complex remains inactive despite the loss of SpoIVFA. Taken together, the results suggest that SpoIVB signaling activates the processing complex by performing another function in addition to causing loss of SpoIVFA or by causing loss of SpoIVFA in a different way than when translation is blocked. The results also demonstrate that the processing machinery can function in the absence of translation or an electrochemical gradient across membranes.  相似文献   

2.
Upon starvation Bacillus subtilis undergoes a developmental process involving creation of two cell types, the mother cell and forespore. A signal in the form of a serine protease, SpoIVB, is secreted from the forespore and leads to regulated intramembrane proteolysis (RIP) of pro-sigmaK, releasing active sigmaK into the mother cell. RIP of pro-sigmaK is carried out by a membrane-embedded metalloprotease, SpoIVFB, which is inactive when bound by BofA and SpoIVFA. We have investigated the mechanism by which this complex is activated. By expressing components of the signalling pathway in Escherichia coli, we reconstructed complete inhibition of pro-sigmaK RIP by BofA and SpoIVFA, and found that SpoIVB serine protease activity could partially restore RIP, apparently by targeting SpoIVFA. Pulse-chase experiments demonstrated that SpoIVFA synthesized early during B. subtilis sporulation is lost in a SpoIVB-dependent fashion, coincident with the onset of pro-sigmaK RIP, supporting the idea that SpoIVB targets SpoIVFA to trigger RIP of pro-sigmaK. Loss of BofA depended not only on SpoIVB, but also on CtpB, a serine protease secreted from the mother cell. CtpB appeared to cleave BofA near its C-terminus upon coexpression in E. coli, and purified CtpB degraded BofA. We propose that RIP of pro-sigmaK involves a three-step proteolytic cascade in which SpoIVB first cleaves SpoIVFA, CtpB then cleaves BofA and finally SpoIVFB cleaves pro-sigmaK.  相似文献   

3.
SpoIVB is the critical determinant for intercompartmental signalling of pro-sigmaK processing during sporulation in Bacillus subtilis. We show here that the SpoIVB serine peptidase can cleave the SpoIVFA protein, which is one component of the pro-sigmaK processing complex. SpoIVFA has been shown elsewhere (Rudner, D.Z., and Losick, R., 2002, Genes Dev 16: 1007-1018) to tether BofA and SpoIVFB in a membrane-embedded heteroligomeric complex in which BofA directly inhibits the activity of SpoIVFB. Cleavage of SpoIVFA would provide the necessary signal to dissolve this complex and release BofA-mediated inhibition on the zinc metalloprotease, SpoIVFB, that is responsible for cleaving pro-sigmaK to its mature form. We also show that the SpoIVB PDZ domain is required for self-recognition and trans cleavage of SpoIVB and is probably also used to target an internal motif within the C-terminal region of SpoIVFA exposed in the space between the inner and outer forespore membranes. This work reveals the mechanism of intercompartmental signalling and provides a unified model as to how sigmaK-directed gene expression in the mother cell is co-ordinated with events in the forespore chamber.  相似文献   

4.
5.
6.
During sporulation of Bacillus subtilis, pro-sigmaK is activated by regulated intramembrane proteolysis (RIP) in response to a signal from the forespore. RIP of pro-sigmaK removes its prosequence (amino acids 1 to 20), releasing sigmaK from the outer forespore membrane into the mother cell cytoplasm, in a reaction catalyzed by SpoIVFB, a metalloprotease in the S2P family of intramembrane-cleaving proteases. The requirements for pro-sigmaK to serve as a substrate for RIP were investigated by producing C-terminally truncated pro-sigmaK fused at different points to the green fluorescent protein (GFP) or hexahistidine in sporulating B. subtilis or in Escherichia coli engineered to coexpress SpoIVFB. Nearly half of pro-sigmaK (amino acids 1 to 117), including part of sigma factor region 2.4, was required for RIP of pro-sigmaK-GFP chimeras in sporulating B. subtilis. Likewise, pro-sigmaK-hexahistidine chimeras demonstrated that the N-terminal 117 amino acids of pro-sigma(K) are sufficient for RIP, although the N-terminal 126 amino acids, which includes all of region 2.4, allowed much better accumulation of the chimeric protein in sporulating B. subtilis and more efficient processing by SpoIVFB in E. coli. In contrast to the requirements for RIP, a much smaller N-terminal segment (amino acids 1 to 27) was sufficient for membrane localization of a pro-sigmaK-GFP chimera. Addition or deletion of five amino acids near the N terminus allowed accurate processing of pro-sigmaK, ruling out a mechanism in which SpoIVFB measures the distance from the N terminus to the cleavage site. A charge reversal at position 13 (substituting glutamate for lysine) reduced accumulation of pro-sigmaK and prevented detectable RIP by SpoIVFB. These results elucidate substrate requirements for RIP of pro-sigmaK by SpoIVFB and may have implications for substrate recognition by other S2P family members.  相似文献   

7.
8.
9.
10.
11.
During the process of spore formation in Bacillus subtilis many membrane proteins localize to the sporulation septum where they play key roles in morphogenesis and cell-cell signalling. However, the mechanism by which these proteins are anchored at this site is not understood. In this report we have defined the localization requirements for the mother-cell membrane protein SpoIVFA, which anchors a signalling complex in the septal membrane on the mother cell side. We have identified five proteins (SpoIID, SpoIIP, SpoIIM, BofA and SpoIIIAH) synthesized in the mother cell under the control of sigma(E) and one protein (SpoIIQ) synthesized in the forespore under the control of sigma(F) that are all required for the proper localization of SpoIVFA. Surprisingly, these proteins appear to have complementary and overlapping anchoring roles suggesting that SpoIVFA is localized in the septal membrane through a web of protein interactions. Furthermore, we demonstrate a direct biochemical interaction between the extracellular domains of two of the proteins required to anchor SpoIVFA: the forespore protein SpoIIQ and the mother-cell protein SpoIIIAH. This result supports the idea that the web of interactions that anchors SpoIVFA is itself held in the septal membrane through a zipper-like interaction across the sporulation septum. Importantly, our results suggest that a second mechanism independent of forespore proteins participates in anchoring SpoIVFA. Finally, we show that the dynamic localization of SpoIIQ in the forespore is impaired in the absence of SpoIVFA but not SpoIIIAH. Thus, a complex web of interactions among mother cell and forespore proteins is responsible for static and dynamic protein localization in both compartments of the sporangium. We envision that this proposed network is involved in anchoring other sporulation proteins in the septum and that protein networks with overlapping anchoring capacity is a feature of protein localization in all bacteria.  相似文献   

12.
13.
The BofC protein acts negatively on intercompartmental signalling of pro-sigma(K) processing in the sigma(K)-checkpoint of Bacillus subtilis. Signalling is brought about by the SpoIVB protein, which is synthesized in the forespore and initiates proteolytic processing of pro-sigmaK to its mature and active form in the opposed mother cell chamber of the developing cell. We have shown here that BofC, like SpoIVB, is secreted across the inner forespore membrane and, from the analysis of a bofC deletion and insertion mutant, is likely to interact with SpoIVB. In the absence of BofC, the amount of SpoIVB found in sporulating cells is substantially reduced, although SpoIVB is still able to activate proteolysis of pro-sigma(K). Conversely, in the absence of SpoIVB, the levels of BofC accumulate suggesting that the fate of each molecule is dependent upon their mutual interaction. Our results suggest that BofC could maintain SpoIVB in a stable but inactive form. Supporting this, we have shown that overproduction of BofC inhibits SpoIVB autoproteolysis and leads to a delay in proteolytic cleavage of pro-sigma(K). Based on our work here, we have proposed a model for BofC's functional role in intercompartmental signalling.  相似文献   

14.
15.
16.
17.
Diazaborine treatment of yeast cells was shown previously to cause accumulation of aberrant, 3'-elongated mRNAs. Here we demonstrate that the drug inhibits maturation of rRNAs for the large ribosomal subunit. Pulse-chase analyses showed that the processing of the 27S pre-rRNA to consecutive species was blocked in the drug-treated wild-type strain. The steady-state level of the 7S pre-rRNA was clearly reduced after short-term treatment with the inhibitor. At the same time an increase of the 35S pre-rRNA was observed. Longer incubation with the inhibitor resulted in a decrease of the 27S precursor. Primer extension assays showed that an early step in 27S pre-rRNA processing is inhibited, which results in an accumulation of the 27SA2 pre-rRNA and a strong decrease of the 27SA3, 27SB1L, and 27SB1S precursors. The rRNA processing pattern observed after diazaborine treatment resembles that reported after depletion of the RNA binding protein Nop4p/Nop77p. This protein is essential for correct pre-27S rRNA processing. Using a green fluorescent protein-Nop4 fusion, we found that diazaborine treatment causes, within minutes, a rapid redistribution of the protein from the nucleolus to the periphery of the nucleus, which provides a possible explanation for the effect of diazaborine on rRNA processing.  相似文献   

18.
19.
C Schmid  J Zapf  E R Froesch 《FEBS letters》1989,244(2):328-332
A bone-derived rat cell line, PyMS, releases IGF I and IGF carrier proteins which are similar to those found in rat serum. Western blot analysis of culture media conditioned by hormone-treated cells shows that growth hormone and IGF I stimulate and cortisol inhibits production of IGF carrier proteins in vitro. A glycosylated carrier protein species of 49-42 kDa is closely related to the subunits of the growth hormone-dependent carrier protein complex found in rat serum. In addition, rhIGF I rapidly induces a 32 kDa, non-glycosylated IGF-binding protein whose accumulation is markedly increased by cortisol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号