首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One approach to identifying components of the circadian oscillator is to screen for clock defects in mutants with known biochemical lesions. The chol-1 mutant of Neurospora crassa is defective in the first methylation step of phosphatidylcholine synthesis, the conversion of phosphatidylethanolamine to phosphatidylmonomethylethanolamine, and requires choline for normal growth. Choline depletion of this mutant inhibits growth and lengthens the period of the rhythm of conidiation. On high levels of choline (above 20 µM), the growth rate and the period of the rhythm are normal. Below about 10 µM choline, the growth rate and period length depend on the choline concentration, and the period is about 58 h on minimal medium without choline. Choline depletion decreases period stability, and replicate cultures do not remain in phase due to variability in period within each culture. At intermediate levels of choline (around 10 µM) cultures are often arrhythmic. The choline requirement for growth can be met by the phosphatidylcholine precursors monomethylethanolamine and dimethylethanolamine, and these supplements also restore a normal period. Choline depletion of the chol-1 strain exaggerates the rhythm in growth rate previously reported in a chol + strain. Growth rate during formation of a conidial band (measured as forward advance of the mycelial front) is less than half of the maximum rate during non-conidiating interband formation. Choline-depleted cultures can be entrained to light/dark (LD) cycles with periods near to their free-running periods. Cultures on 10 µM choline (with a free-running period of about 25 h) can be entrained to a 24 h (12:12) LD cycle, but not to a 36 h (18:18) or 48 h (24:24) LD cycle. Cultures on 0.5 µM choline (free-running period of about 52 h) or minimal medium (free-running period of about 58 h) can be entrained to 18:18 and 24:24 LD cycles, but not a 12:12 cycle. The phase relationship of the conidiation rhythm to the zeitgeber for low-choline cultures in LD 24:24 is similar to high choline cultures in LD 12:12. Continuous light abolishes rhythmicity in choline-depleted cultures. These results may indicate a role for membrane phospholipids, and the metabolites of phosphatidylcholine in particular, in the control of the period of the circadian oscillator in Neurospora.  相似文献   

2.
Chloramphenicol, an inhibitor of mitochondrial protein synthesis, shortened the period length of the circadian rhythm in the Timex strain of Neurospora crassa by 2 hours. Both the l(+) threo and d(-) threo optical isomers had the same effect on the period of the rhythm, whereas only the d(-) threo isomer significantly inhibited mitochondrial protein synthesis. Tetracycline, another inhibitor of mitochondrial protein synthesis, did not change the period of the circadian rhythm. The effect of chloramphenicol on the circadian rhythm is, therefore, presumably not directly related to inhibition of mitochondrial protein synthesis, suggesting that chloramphenicol has other effects.  相似文献   

3.
Period lengths at different temperatures and phase responsecurves at a high temperature (35°C) of circadian conidiationrhythms were examined in 13 temperature-sensitive (un) strainsof Neurospora crassa. Two strains, un-16 and un-18, had longerperiod lengths than the wild-type strain even at permissivetemperatures. Period lengths of six strains, un-4, un-11, un-16,un-18, un-19 and un-22, changed differently from that of thewild-type strain at restrictive temperatures. However, the shapeof phase response curves for high temperature (35°C) for3 h was almost the same for all un strains and the wild-typestrain. We isolated 97 temperature-sensitive mutants with periodlengths from 19.2 to 24.8 h and determined the dependence ontemperature of the period length of the conidiation rhythm foreach mutant. The mutants could be divided into four differentgroups in terms of their responses to changes in temperature. (Received September 8, 1993; Accepted March 10, 1994)  相似文献   

4.
Effects of respiratory inhibitors on the circadian clock, respiratory activity, and ATP content were examined in Neurospora crassa. All inhibitors, potassium cyanide, sodium azide, antimycin A, and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), shifted the phase of the conidiation rhythm. All the phase response curves were similar and resembled that for cycloheximide, but were different from the phase response curve for light. Phase shifting by azide and CCCP was proportional to the lowering of respiratory activity and ATP content, but such a correlation was not observed for cyanide and antimycin A. In particular, cyanide at a concentration of 0.5 millimolar completely depleted ATP of the cultures but did not significantly shift their phase. Their results suggest that large shifts caused by these inhibitors are not due to a decrease in energy from respiratory activity.  相似文献   

5.
A new strain of Neurospora crassa which exhibits a rhythm of conidiation when growing along an agar surface in a growth tube is described. The rhythm has been shown to be circadian for it meets the following criteria: A) the period under constant environmental conditions in the dark is about 24 hours (22.7 hours at 25 degrees ); B) the period is relatively temperature-independent (Q(10) is between 0.95 and 1.21 for temperature range of 18 to 35 degrees ); C) the rhythm persists in continuous darkness at constant temperature for a minimum of 14 days without damping out; and D) the phase of the rhythm can be shifted by a single brief exposure to light. The sensitivity of this strain to light has been demonstrated further by the entrainment of the rhythm to a period of 24.0 hours using a suitable light-dark regime, and by the inhibition by light of the appearance of a rhythm; i.e., continuous conidiation occurs when the strain is subjected to continuous light. The new strain is compared to 2 other strains of Neurospora which also express a rhythm, patch and clock.  相似文献   

6.
To assess their effects on the conidiation rhythm in Neurospora, 14 saturated fatty acids from 6 to 24 carbons long were used to supplement the bd csp and bd csp cel strains. Both strains express a circadian spore-forming rhythm when grown on solid media; the cel mutation confers a partial fatty acid requirement. Fatty acid supplements from 8 to 13 carbons long lengthened the free-running period of bd csp cel compared with the control value of 21 h; the maximal effect (33 h) was obtained with nonanoic acid (9:0) at a concentration of 5 x 10(-4) M. In contrast, the period of bd csp remained unchanged under all experimental conditions. The short-chain fatty acids (<14 carbons) reduced the rate of advance of the growth front in both strains, compared with unsupplemented controls. However, this inhibition did not appear to be responsible for the lengthened periods in bd csp cel. Nor was direct incorporation of the short-chain (period-lengthening) fatty acids into mycelial total lipids responsible, since such incorporation was not observed. In fact, extensive metabolic conversion of these supplements by both strains was indicated by the disappearance of short-chain fatty acids from the agar media coupled with their absence in mycelial lipids, and by the liberation of (14)CO(2) from cultures supplemented with [1-(14)C]lauric acid (12:0).  相似文献   

7.
The process of light-induced phase shifting was investigatedin Neurospora crassa using a liquid culture system and a combinationof treatment with a nucleoside analogue and light. 5-Azacytidineinhibited the light-induced phase shifting at all phases thatwere sensitive to light. Electrophoresis of proteins that weresynthesized in a translation system in vitro showed that 5-azacytidineinhibited the synthesis of most mRNAs. The inhibition of mRNAsynthesis was correlated with the inhibition of light-inducedphase shifting. An excess of cytidine completely overcame theinhibition by 5-azacytidine of both light-induced phase shiftingand mRNA synthesis. Other analogues, namely, 6-azauridine and6-methylpurine, failed to inhibit either the light-induced phaseshifting or the synthesis of mRNA. Two-dimensional gel electrophoresisshowed that the levels of expression of nine mRNAs were affectedby light within 30 min after irradiation. By contrast, the oscillatorof the circadian clock was not affected by pulse treatment with5-azacytidine alone because such treatment failed to shift thephase of the circadian rhythm at any phase. These results indicatethat newly synthesized mRNA(s) is required during the processof signal transduction, from the light-perceiving system tothe circadian clock, for light-induced phase shifting in Neurospora. (Received October 17, 1994; Accepted January 23, 1995)  相似文献   

8.
At first, the saprophytic eukaryote Neurospora crassa and the photosynthetic prokaryote Synechococcus elongatus may seem to have little in common. However, in both organisms a circadian clock organizes cellular biochemistry, and each organism lends itself to classical and molecular genetic investigations that have revealed a detailed picture of the molecular basis of circadian rhythmicity. In the present chapter, an overview of the molecular clockwork in each organism will be described, highlighting similarities, differences and some as yet unexplained phenomena.  相似文献   

9.
Effects of the calcium ionophore, A23187, and antimycin A on the circadian conidiation rhythm of Neurospora crassa were examined. A23187 at a concentration of 1 mum in medium not containing divalent cations delayed the phase by 10 hours at CT 10 and advanced it by 5 hours at CT 14 (CT 12 corresponds to the time that discs are transferred from light to dark). This phase shifting was completely inhibited by addition of 0.1 millimolar CaCl(2) but not by MgCl(2) at any concentrations examined.Antimycin A inhibited respiration by 90% at a concentration of 0.2 micrograms per milliliter and lowered the ATP content by 85%. Antimycin A alone caused small phase advances but in combination with A23187 resulted in a large phase delay at CT 10. This phase shifting was not reversed by addition of CaCl(2) lower than 10 millimolar.  相似文献   

10.
Low strength magnetic fields, 6.36 and 32.25 gauss, were found to have no effect, with one questionable exception, on the circadian rhythm and growth rate of Neurospora crassa. This was true whether the fields were continuous, pulsed 20 minutes daily, or on a 12: 12, on-off cycle.  相似文献   

11.
FREQUENCY (FRQ) is a critical element of the circadian system of Neurospora. The white collar genes are important both for light reception and circadian function. We show that the responsiveness of the light input pathway is circadianly regulated. This circadian modulation extends to light-inducible components and functions that are not rhythmic themselves in constant conditions. FRQ interacts genetically and physically with WHITE COLLAR-1, and physically with WHITE COLLAR-2. These findings begin to address how components of the circadian system interact with basic cellular functions, in this case with sensory transduction.  相似文献   

12.
Circadian Rhythms of Nucleic Acid Metabolism in Neurospora crassa   总被引:3,自引:2,他引:3       下载免费PDF全文
Wild-type, band, and fluffy strains of Neurospora crassa exhibit circadian rhythms of ribonucleic acid and deoxyribonucleic acid content in the growth-front hyphae of cultures grown on a solid medium. There is also a rhythm of (3)H-uridine incorporation into the nucleic acids of the band strain. Maximum incorporation precedes the peaks of nucleic acid content which occur during conidiation. As cultures age, ribonucleic acid content decreases rapidly and deoxyribonucleic acid content decreases gradually in standing, shake, and bubble cultures. A reduction of ribonuclease activity with age is also noted in standing and shake cultures. The nucleic acid content, nuclease activity, and changes associated with age vary with the culture conditions.  相似文献   

13.
We have constructed a plasmid vector for expressing firefly luciferase in Neurospora crassa under control of the light- and clock-regulated ccg-2 (eas) promoter. The sequence of the luciferase gene in the vector has been modified to reflect the N. crassa codon bias. Both light-induced activity and circadian activity are demonstrated. Expression of luciferase in strains carrying mutant frequency alleles shows appropriate period length alterations. These data demonstrate that luciferase is a sensitive reporter of gene expression in N. crassa. Our results also show that the modified luciferase is expressed in Aspergillus nidulans.  相似文献   

14.
Effects of several membrane ATPase inhibitors on light-induced phase shifting of the circadian conidiation rhythm in Neurospora crassa were examined using mycelial discs in liquid culture. Suppression of phase shifting by the inhibitors was strongly dependent on the pH of the liquid medium in which the discs were cultured during the time from light-dark transition (beginning of free-run) to light irradiation. When discs were cultured in pH 6.7 medium, azide, the inhibitors of plasma membrane ATPase (diethylstilbestrol and N, N′-dicyclohexylcarbodiimide), and ethanol completely suppressed the effect of light on the clock. In contrast, mycelial discs cultured in pH 5.7 medium were fully phase-shifted by light in the presence of the same and even higher concentrations of the chemicals. However, sensitivity to light of the discs cultured in relatively acidic medium was eight times higher than that of the discs cultured at neutral pH. Oligomycin and venturicidin, inhibitors of mitochondrial ATPase, did not suppress phase shifting by light at either pH.  相似文献   

15.
16.
Energy metabolism and mitochondria have been discussed with respect to their role in the circadian rhythm mechanism for some time. Numerous examples of inhibitors that affect the mitochondria of plants and animals and microorganisms are known, which cause large phase shifts in the rhythms of these organisms. Analogous studies on the role of mitochondria in the Neurospora circadian rhythm mechanism have also been reported and summarized. This communication differs from previous studies on other organisms in that it will focus on two lines of evidence derived from studies on Neurospora strains carrying mutations affecting the mitochondria, (a) Strains whose growth rate is resistant to oligomycin (olit) owing to an altered protein in the F0 sector of the mitochondrial ATPase, showed no phase shifts when pulsed with oligomycin. Control strains (oli8) showed large phase shifts when pulsed with oligomycin. This indicates that the phase-shifting effect of oligomycin is due to the direct inhibition of the mitochondrial ATPase and not some side effect of this inhibitor, (b) In Neurospora, many different strains are known that carry mutations in the nuclear or mitochondrial genome that affect mitochondrially localized proteins. Some of these, such as oli', [MI-3], or cya-5, showed shorter (≥ 19-h) periods compared with the normal (21.5-h) period. Others showed little or no change in period. Those mutant strains exhibiting shorter periods also contained ≥60% more mitochondrial protein per gram total protein in extracts compared with the normal strains. Assays of the level of a mitochondrial-specific protein, acyl carrier protein, showed that the cellular content of this protein was approximately doubled. A parallel set of studies on the effects of antimycin or chloramphenicol on Neurospora demonstrated that these inhibitors also produced shorter periods as well as increased amounts of mitochondrial proteins. These two new lines of evidence may be interpreted to indicate that in Neurospora either some part of the oscillator is localized to the mitochondria and/or that mitochondria exert their effect on the clock mechanism through their effects on biosynthetic pathways or by their contribution in determining ion gradients.  相似文献   

17.
Following exposure to light and attainment of steady-state in the chemostat, Neurospora was grown in constant conditions of darkness at 25 degrees C for 6 days. Biomass samples were taken every 4h for the extraction of RNA and protein, and the state of the circadian clock was assessed by assaying the levels of three rhythmically expressed mRNAs; frequency (frq), antisense frq (qrf) and clock-controlled gene-14 (ccg-14), and by monitoring the clock-controlled rhythm of sporulation. Our results indicate that the Neurospora clock continued to run in the chemostat. This is the longest reported time that Neurospora has been grown in a chemostat in filamentous form and opens up the possibility of studying the response of Neurospora to a range of stimuli in the absence of confounding effects due to; alterations in growth rate, aging, and changing conditions of the growth medium.  相似文献   

18.
Energy metabolism and mitochondria have been discussed with respect to their role in the circadian rhythm mechanism for some time. Numerous examples of inhibitors that affect the mitochondria of plants and animals and microorganisms are known, which cause large phase shifts in the rhythms of these organisms. Analogous studies on the role of mitochondria in the Neurospora circadian rhythm mechanism have also been reported and summarized. This communication differs from previous studies on other organisms in that it will focus on two lines of evidence derived from studies on Neurospora strains carrying mutations affecting the mitochondria, (a) Strains whose growth rate is resistant to oligomycin (olit) owing to an altered protein in the F0 sector of the mitochondrial ATPase, showed no phase shifts when pulsed with oligomycin. Control strains (oli8) showed large phase shifts when pulsed with oligomycin. This indicates that the phase-shifting effect of oligomycin is due to the direct inhibition of the mitochondrial ATPase and not some side effect of this inhibitor, (b) In Neurospora, many different strains are known that carry mutations in the nuclear or mitochondrial genome that affect mitochondrially localized proteins. Some of these, such as oli', [MI-3], or cya-5, showed shorter (≥ 19-h) periods compared with the normal (21.5-h) period. Others showed little or no change in period. Those mutant strains exhibiting shorter periods also contained ≥60% more mitochondrial protein per gram total protein in extracts compared with the normal strains. Assays of the level of a mitochondrial-specific protein, acyl carrier protein, showed that the cellular content of this protein was approximately doubled. A parallel set of studies on the effects of antimycin or chloramphenicol on Neurospora demonstrated that these inhibitors also produced shorter periods as well as increased amounts of mitochondrial proteins. These two new lines of evidence may be interpreted to indicate that in Neurospora either some part of the oscillator is localized to the mitochondria and/or that mitochondria exert their effect on the clock mechanism through their effects on biosynthetic pathways or by their contribution in determining ion gradients.  相似文献   

19.
Circadian rhythms in Neurospora crassa: oscillations in fatty acids   总被引:3,自引:0,他引:3  
P E Roeder  M L Sargent  S Brody 《Biochemistry》1982,21(20):4909-4916
  相似文献   

20.
The mycelial growth front of the band strain of Neurospora grown on a solid surface exhibits a circadian rhythm of conidiation. Enzyme assays on extracts from that mycelium have shown that the activities of 6 of 13 enzymes (nicotinamide adenine dinucleotide nucleosidase, isocitrate lyase, citrate synthase, glyceraldehydephosphate dehydrogenase, phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase) and soluble-protein content oscillate with the visible morphological change. The rhythmic enzymes associated with the Krebs and glyoxylate cycles are more active during conidiogenesis, whereas the activities of the rhythmic enzymes of glycolysis and the hexose monophosphate shunt are reduced during that phase. The absence of enzyme oscillations in wild-type and fluffy strains which do not form conidia under the conditions employed suggests that the enzyme fluctuations are associated with conidiogenesis itself. Oscillations of enzyme activity as a function of time are restricted to the growth front. A permanent record of rhythmicity associated with conidial and nonconidial regions does, however, exist in the mycelial mat behind the growth front. The activities of three enzymes (nicotinamide adenine dinucleotide nucleosidase, glucose-6-phosphate dehydrogenase, and phosphogluconate dehydrogenase) are not directly influenced by CO(2) concentration, but are correlated with the prescence or absence of conidiation which is controlled by CO(2) concentration. In contrast, citrate synthase and malate dehydrogenase activities are correlated with changes in CO(2) concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号