首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study continues the investigations previously conducted as laboratory experiments. The results from the present study confirm our earlier observations made on alder seedlings concerning the effect of water stress, temperature and light on the net uptake of CO2. A variable that we could call the physiological water stress is proposed as a measure of the intrinsic factor of photosynthesis during and after drought. A physiological water stress builds up and discharges slowly and interacts strongly with temperature. Our model for the effects of physiological water stress, temperature, and light intensity explains satisfactorily the net uptake of CO2 in birch in the field. Thus, our earlier results concerning the effects of physiological water stress on photosynthesis are not artifacts generated by the unnatural laboratory environment.  相似文献   

2.
Responses of CAM species to increasing atmospheric CO2 concentrations   总被引:1,自引:0,他引:1  
Crassulacean acid metabolism (CAM) species show an average increase in biomass productivity of 35% in response to a doubled atmospheric CO2 concentration. Daily net CO2 uptake is similarly enhanced, reflecting in part an increase in chlorenchyma thickness and accompanied by an even greater increase in water‐use efficiency. The responses of net CO2 uptake in CAM species to increasing atmospheric CO2 concentrations are similar to those for C3 species and much greater than those for C4 species. Increases in net daily CO2 uptake by CAM plants under elevated atmospheric CO2 concentrations reflect increases in both Rubisco‐mediated daytime CO2 uptake and phosphoenolpyruvate carboxylase (PEPCase)‐mediated night‐time CO2 uptake, the latter resulting in increased nocturnal malate accumulation. Chlorophyll contents and the activities of Rubisco and PEPCase decrease under elevated atmospheric CO2, but the activated percentage for Rubisco increases and the KM(HCO3 ? ) for PEPCase decreases, resulting in more efficient photosynthesis. Increases in root:shoot ratios and the formation of additional photosynthetic organs, together with increases in sucrose‐Pi synthase and starch synthase activity in these organs under elevated atmospheric CO2 concentrations, decrease the potential feedback inhibition of photosynthesis. Longer‐term studies for several CAM species show no downward acclimatization of photosynthesis in response to elevated atmospheric CO2 concentrations. With increasing temperature and drought duration, the percentage enhancement of daily net CO2 uptake caused by elevated atmospheric CO2 concentrations increases. Thus net CO2 uptake, productivity, and the potential area for cultivation of CAM species will be enhanced by the increasing atmospheric CO2 concentrations and the increasing temperatures associated with global climate change.  相似文献   

3.
The effects on photosynthesis of CO2 and desiccation in Porphyra haitanensis were investigated to establish the effects of increased atmospheric CO2 on this alga during emersion at low tides. With enhanced desiccation, net photosynthesis, dark respiration, photosynthetic efficiency, apparent carboxylating efficiency and light saturation point decreased, while the light compensation point and CO2 compensation point increased. Emersed net photosynthesis was not saturated by the present atmospheric CO2 level (about 350?ml?m?3), and doubling the CO2 concentration (700?ml?m?3) increased photosynthesis by between 31% and 89% at moderate levels of desiccation. The relative enhancement of emersed net photosynthesis at 700?ml?m?3 CO2 was greater at higher temperatures and higher levels of desiccation. The photosynthetic production of Porphyra haitanensis may benefit from increasing atmospheric CO2 concentration during emersion.  相似文献   

4.
Larrea divaricata, a desert evergreen shrub, has a remarkable ability to adjust its photosynthetic temperature response characteristics to changing temperature conditions. In its native habitat on the floor of Death Valley, California, plants of this C3 species when provided with adequate water are able to maintain a relatively high and constant photosynthetic activity throughout the year even though the mean daily maximum temperature varies by nearly 30 C from winter to summer. The temperature dependence of light-saturated net photosynthesis varies in concert with these seasonal temperature changes whereas the photosynthetic rate at the respective optimum temperatures shows little change.

Experiments on plants of the same age, grown at day/night temperatures of 20/15, 35/25, and 45/33 C with the same conditions of day length and other environmental factors, showed a similar photosynthetic acclimation response as observed in nature. An analysis was made of a number of factors that potentially can contribute to the observed changes in the temperature dependence of net CO2 uptake at normal CO2 and O2 levels. These included stomatal conductance, respiration, O2 inhibition of photosynthesis, and nonstomatal limitations of CO2 diffusive transport. None of these factors, separately or taken together, can account for the observed acclimation responses. Measurements under high saturating CO2 concentrations provide additional evidence that the observed adaptive responses are primarily the result of changes in intrinsic characteristics of the photosynthetic machinery at the cellular or subcellular levels. Two apparently separate effects of the growth temperature regime can be distinguished: one involves an increased capacity for photosynthesis at low, rate-limiting temperatures with decreased growth temperature, and the other an increased thermal stability of key components of the photosynthetic apparatus with increased growth temperature.

  相似文献   

5.
Summary A model predicting net photosynthesis of individual plant leaves for a variety of environmental conditions has been developed. It is based on an electrical analogue describing gas diffusion from the free atmosphere to the sites of CO2 fixation and a Michaelis-Menten equation describing CO2 fixation. The model is presented in two versions, a simplified form without respiration and a more complex form including respiration. Both versions include terms for light and temperature dependence of CO2 fixation and light control of stomatal resistance. The second version also includes terms for temperature, light, and oxygen dependence of respiration and O2 dependence of CO2 fixation.The model is illustrated with curves based on representative values of the various environmental and biological parameters. These curves relate net photosynthesis to light intensity, [CO2], [O2], temperature, and resistances to CO2 uptake. The shape of the [CO2]-net photosynthesis curves depends on the total diffusion resistance to CO2 uptake and the Michaelis constant for CO2 uptake. The curves range from typical Michaelis-Menten to Blackman types.The model is combined with a model of leaf energy exchange permitting simultaneous estimation of net photosynthesis and transpiration. The combined model is illustrated with curves relating transpiration to photosynthesis under a wide variety of environmental conditions. Environmental regimes yielding maximum efficiency of water use are identified for the given assumptions and biological parameters.  相似文献   

6.
The responses of CO2 exchange and overnight malate accumulation of leaf and stem succulent CAM-plants to water stress and the particular climatic conditiens of fog and föhn in the southern Namib desert have been investigated. In most of the investigated CAM plants a long term water stress gradually attenuated any uptake of external CO2 and led to CO2 release throughout day and night. No CAM-idling was observed. Rainfall or irrigation immediately restored daytime CO2 uptake while the recovery of the noctural CO2 uptake was delayed. Dawn peak of photosynthesis was only found in well watered plants but was markedly reduced by the short term water stress of a föhn-storm. Morning fog with its higher diffuse light intensity compared with clear days increased photosynthetic CO2 uptake considerably. Even in well watered plants noctural CO2 uptake and malate accumulation were strongly affected by föhn indicating that the water vapour pressure deficit during the night determines the degree of acidification.  相似文献   

7.
G. J. Collatz 《Planta》1977,134(2):127-132
The response of net photosynthesis and apparent light respiration to changes in [O2], light intensity, and drought stress was determined by analysis of net photosynthetic CO2 response curves. Low [O2] treatment resulted in a large reduction in the rate of photorespiratory CO2 evolution. Lightintensity levels influenced the maximum net photosynthetic rate at saturating [CO2]. These results indicate that [CO2], [O2] and light intensity affect the levels of substrates involved in the enzymatic reactions of photosynthesis and photorespiration. Intracellular resistance to CO2 uptake decreased in low [O2] and increased at low leaf water potentials. This response reflects changes in the efficiency with which photosynthetic and photorespiratory substrates are formed and utilized. Water stress had no effect on the CO2 compensation point or the [CO2] at which net photosynthesis began to saturate at high light intensity. The relationship between these data and recently published in-vitro kinetic measurements with ribulose-diphosphate carboxylase is discussed.Abbreviations C w intracellular CO2 concentration - F gross gross photosynthesis - F net net photosynthesis - I light intensity - R L light respiration rate - r c carboxylation resistance - r 8 leaf gas-phase resistance - r i intracellular resistance; to CO2 uptake - r t resistance to CO2 flux between the intercellular spaces and the carboxylation sites - T L leaf temperature - t leaf water potential - CO2 compensation point  相似文献   

8.
The responses of CO2 exchange and overnight malate accumulation of leaf and stem succulent CAM-plants to water stress and the particular climatic conditions of fog and föhn in the southern Namib desert have been investigated. In most of the investigated CAM plants a long term water stress gradually attenuated any uptake of external CO2 and led to CO2 release throughout day and night. No CAM-idling was observed. Rainfall or irrigation immediately restored daytime CO2 uptake while the recovery of the nocturnal CO2 uptake was delayed. Dawn peak of photosynthesis was only found in well watered plants but was markedly reduced by the short term water stress of a föhn-storm. Morning fog with its higher diffuse light intensity compared with clear days increased photosynthetic CO2 uptake considerably. Even in well watered plants nocturnal CO2 uptake and malate accumulation were strongly affected by föhn indicating that the water vapour pressure deficit during the night determines the degree of acidification.  相似文献   

9.
Trees growing in natural systems undergo seasonal changes in environmental factors that generate seasonal differences in net photosynthetic rates. To examine how seasonal changes in the environment affect the response of net photosynthetic rates to elevated CO2, we grew Pinus taeda L. seedlings for three growing seasons in open-top chambers continuously maintained at either ambient or ambient + 30 Pa CO2. Seedlings were grown in the ground, under natural conditions of light, temperature nd nutrient and water availability. Photosynthetic capacity was measured bimonthly using net photosynthetic rate vs. intercellular CO2 partial pressure (A-Ci) curves. Maximum Rubisco activity (Vcmax) and ribulose 1,5-bisphosphate regeneration capacity mediated by electron transport (Jmax) and phosphate regeneration (PiRC) were calculated from A-Ci curves using a biochemically based model. Rubisco activity, activation state and content, and leaf carbohydrate, chlorophyll and nitrogen concentrations were measured concurrently with photosynthesis measurements. This paper presents results from the second and third years of treatment. Mean leaf nitrogen concentrations ranged from 13.7 to 23.8 mg g?1, indicating that seedlings were not nitrogen deficient. Relative to ambient CO2 seedlings, elevated CO2 increased light-saturated net photosynthetic rates 60–110% during the summer, but < 30% during the winter. A relatively strong correlation between leaf temperature and the relative response of net photosynthetic rates to elevated CO2 suggests a strong effect of leaf temperature. During the third growing season, elevated CO2 reduced Rubisco activity 30% relative to ambient CO2 seedlings, nearly completely balancing Rubisco and RuBP-regeneration regulation of photosynthesis. However, reductions in Rubisco activity did not eliminate the seasonal pattern in the relative response of net photosynthetic rates to elevated CO2. These results indicate that seasonal differences in the relative response of net photosynthetic rates to elevated CO2 are likely to occur in natural systems.  相似文献   

10.
Abstract. It has been shown that atmospheric O2 can either depress or stimulate the rate of apparent photosynthesis of white mustard depending on the environmental conditions: CO2 concentration, light intensity and temperature. Stimulation by O2 was observed only under high photon fluence rate and at high CO2 concentrations. The critical CO2 concentration below which O2 was inhibiting and above which it was stimulating was dependent on the temperature of the assay: for plants grown at 12°C the critical CO2 concentration was 13.35 mmol at 5° C and 21.92 mmol at 10° C. Stimulation by O2 depended also on the growth temperature: for measurements at 26.31 mmol m?3 CO2, O2 was stimulating at temperatures less than 12°C for plants grown at 12°C and less than 19°C for plants grown at 27°C. The efficiency of the O2-dependent stimulation of net photosynthesis was maximum at 9.21 mol m?3 O2 at 26.31 mmol m?3 CO2. Oxygen-stimulation of net photosynthesis was detected in Nicotiana tabacum L. var Samsun, Lycopersicum esculentum L. and Chenopodium album L. At 5°C and under high photon fluence rate, O2 increased the carboxylation capacity of the photosynthetic apparatus of mustard and decreased its affinity for CO2. The O2 inhibition of the net CO2 uptake observed at low CO2 concentrations was the result of a decrease in the affinity for carbon dioxide. The nature of the mechanism which causes the stimulation of photosynthesis is discussed.  相似文献   

11.
Summary The heterophyllous epiphyte Tillandsia deppeana exhibits an atmospheric habit as a juvenile and a tank form as an adult. Both juveniles and adults utilize C3 photosynthesis. This is the first report of an atmospheric form of Tillandsia which does not exhibit CAM. Photosynthetic saturation occurred at approximately 10% of full sunlight in both forms, but the adults exhibited greater rates of photosynthesis at all levels of irradiance. The adults also had a higher and broader photosynthetic temperature optimum than did the juveniles. The adults transpired at greater rates than the juveniles; however, the water use efficiencies of both forms were similar and were high for C3 plants. In both forms the photosynthetic rate decreased in response to a decrease in humidity. After 8 days without water the juveniles were able to fix CO2 throughout the day. The adults, however, exhibited a net loss of CO2 on the second day without water and thereafter. These results indicate that the water-conservative atmospheric juvenile of T. deppeana is well adapted to establishment in the epiphytic habitat.  相似文献   

12.
We found similarities between the effects of low night temperatures (5°C–10°C) and slowly imposed water stress on photosynthesis in grapevine (Vitis vinifera L.) leaves. Exposure of plants growing outdoors to successive chilling nights caused light- and CO2-saturated photosynthetic O2 evolution to decline to zero within 5 d. Plants recovered after four warm nights. These photosynthetic responses were confirmed in potted plants, even when roots were heated. The inhibitory effects of chilling were greater after a period of illumination, probably because transpiration induced higher water deficit. Stomatal closure only accounted for part of the inhibition of photosynthesis. Fluorescence measurements showed no evidence of photoinhibition, but nonphotochemical quenching increased in stressed plants. The most characteristic response to both stresses was an increase in the ratio of electron transport to net O2 evolution, even at high external CO2 concentrations. Oxygen isotope exchange revealed that this imbalance was due to increased O2 uptake, which probably has two components: photorespiration and the Mehler reaction. Chilling- and drought-induced water stress enhanced both O2 uptake processes, and both processes maintained relatively high rates of electron flow as CO2 exchange approached zero in stressed leaves. Presumably, high electron transport associated with O2 uptake processes also maintained a high ΔpH, thus affording photoprotection.  相似文献   

13.
Summary An empirical model for describing daily courses of net photosynthesis in Hammada scoparia is being developed. The model is based on the functional relationships, by which various environmental factors affect the photosynthetic activity and which can be measured by experiment in the field. In a sequence of steady-states daily courses of net photosynthesis are predicted during a growing season considering the variability of the physiological states and the capacity for regulative adaptations. The rate of net photosynthesis at a certain date is calculated from the maximal rate of CO2 uptake being expected at that season and from the effects of light, temperature, and air humidity which are scaled from 0 to 1. All factors are connected multiplicatively. The light function accounts for the seasonal changes in the light curve, the temperature function is based on the seasonal shift of the temperature optimum, and the humidity function considers the increasing sensitivity of the stomatal humidity response at increasing water stress. The model is built to be a submodel of a general ecosystem model, where various other submodels (i.e. water stress model, phenology model) are supplied. The present model is tested by predicting daily courses at extreme climatic conditions during the year and by comparing the predicted values of gas exchange with values being measured in an independent experimental procedure. The result shows that the model is able to simulate the natural behaviour of Hammada scoparia during the growing and dry season of a desert habitat. The problems of incorporating the influence of water stress, the interaction of the various factors, and the phenological aspect of the photosynthetic activity is being discussed.  相似文献   

14.
贵州喀斯特森林三种植物对不同坡位环境的光合生理响应   总被引:1,自引:0,他引:1  
该研究以贵州普定喀斯特森林中、下坡位生长的构树( Broussonetia papyrifera)、朴树( Celtis sinensis)和光滑悬钩子( Rubus tsangii)为材料,通过对碳酸酐酶( CA)活性、光合作用日变化、净光合速率对CO2与光的响应曲线、叶绿素荧光特性以及稳定碳同位素组成等指标的测定,进而对比分析三种植物不同的光合生理响应特性。结果表明:构树光合作用过程的无机碳源既可来自大气中的CO2,也可以在气孔部分闭合的情况下利用细胞内的HCO3-,下坡位的构树较高的CA活性使其利用HCO3-的效率会更高,并能在较低光强下具有较高的光能利用效率。这可能与下坡位的构树具有较高的CA活性有关,对下坡位具有更好的适应性。朴树光合无机碳的同化能力最低,且光合无机碳源较单一,主要利用大气CO2,其较慢的生长速率使其对无机碳的需求最低,且能保持较稳定的无机碳同化速率。相对来说,中坡位的朴树具有相对较高的净光合速率和光能利用效率,对中坡位表现出较好的适应性。光滑悬钩子主要利用大气中的CO2进行光合作用。中坡位的光滑悬钩子具有较强的光能利用效率,并表现出较高的净光合速率,光滑悬钩子对中坡位同样表现出较好的适应性。该研究结果为喀斯特生态脆弱区植被重建过程中树种的选择及合理配置提供了科学依据。  相似文献   

15.
Using 14CO2 gas exchange and metabolite analyses, stomatal as well as total internal CO2 uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to −2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO2 exchange was drastically reduced, whereas the total CO2 uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO2. This `CO2 recycling' consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO2 recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed `coefficient of actinic light quenching,' was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.  相似文献   

16.
CO2 and water vapor exchange studies of intact plants of black needle rush (Juncus roemerianus Scheele) were conducted in an undisturbed marsh community on Sapelo Island, Georgia. The seasonal patterns of the light and temperature responses of net photosynthesis, transpiration, leaf diffusive conductance, water-use efficiency and respiration were determined five times over the year. Internal resistances to CO2 uptake were also evaluated. Net photosynthesis was highest in early spring, but declined only slightly through the year. A distinct and moderate temperature optimum of net photosynthesis was observed with decreasing rates above 30 C. Leaf conductances to water vapor were similar at all seasons and were high at cooler temperatures and decreased with increasing temperature. Transpiration was relatively high and constant during all seasons. The water-use efficiency of photosynthesis was high below 25 C, but decreased sharply above that temperature. Dark respiration was relatively low. Seasonal changes reflected changes in leaf density. Decreasing stomatal conductances and increasing respiration rates reduced net photosynthesis at higher temperatures. The stomatal resistance increased and internal resistances to CO2 uptake decreased over the year, but the total resistance remained constant. The internal resistance to CO2 uptake was consistently higher than the stomatal resistance. These seasonal response patterns show that J. roemerianus is well adapted to the seasonal changes in ambient temperature and irradiance and other microenvironmental factors in the high marsh. These physiological characteristics permit this C3 species to maintain a high productivity in a seasonally hot and stressful environment.  相似文献   

17.
Interactive effects of root restriction and atmospheric CO2 enrichment on plant growth, photosynthetic capacity, and carbohydrate partitioning were studied in cotton seedlings (Gossypium hirsutum L.) grown for 28 days in three atmospheric CO2 partial pressures (270, 350, and 650 microbars) and two pot sizes (0.38 and 1.75 liters). Some plants were transplanted from small pots into large pots after 20 days. Reduction of root biomass resulting from growth in small pots was accompanied by decreased shoot biomass and leaf area. When root growth was less restricted, plants exposed to higher CO2 partial pressures produced more shoot and root biomass than plants exposed to lower levels of CO2. In small pots, whole plant biomass and leaf area of plants grown in 270 and 350 microbars of CO2 were not significantly different. Plants grown in small pots in 650 microbars of CO2 produced greater total biomass than plants grown in 350 microbars, but the dry weight gain was found to be primarily an accumulation of leaf starch. Reduced photosynthetic capacity of plants grown at elevated levels of CO2 was clearly associated with inadequate rooting volume. Reductions in net photosynthesis were not associated with decreased stomatal conductance. Reduced carboxylation efficiency in response to CO2 enrichment occurred only when root growth was restricted suggesting that ribulose-1,5-bisphosphate carboxylase/oxygenase activity may be responsive to plant source-sink balance rather than to CO2 concentration as a single factor. When root-restricted plants were transplanted into large pots, carboxylation efficiency and ribulose-1,5-bisphosphate regeneration capacity increased indicating that acclimation of photosynthesis was reversible. Reductions in photosynthetic capacity as root growth was progressively restricted suggest sink-limited feedback inhibition as a possible mechanism for regulating net photosynthesis of plants grown in elevated CO2.  相似文献   

18.
Simultaneous measurements of net CO2 exchange, water vapor exchange, and leaf water relations were performed in Mesembryanthemum crystallinum during the development of crassulacean acid metabolism (CAM) in response to high NaCl salinity in the rooting medium. Determinations of chlorophyll a fluorescence were used to estimate relative changes in electron transport rate. Alterations in leaf mass per unit area, which—on a short-term basis—largely reflect changes in water content, were recorded continuously with a beta-gauge. Turgor pressure of mesophyll cells was determined with a pressure probe. As reported previously (K Winter, DJ von Willert [1972] Z Pflanzenphysiol 67: 166-170), recently expanded leaves of plants grown under nonsaline conditions showed gas-exchange characteristics of a C3 plant. Although these plants were not exposed to any particular stress treatment, water content and turgor pressure regularly decreased toward the end of the 12 hour light periods and recovered during the following 12 hours of darkness. When the NaCl concentration of the rooting medium was raised to 400 millimolar, in increments of 100 millimolar given at the onset of the photoperiods for 4 consecutive days, leaf water content and turgor pressure decreased by as much as 30 and 60%, respectively, during the course of the photoperiods. These transient decreases probably triggered the induction of the biochemical machinery which is required for CAM to operate. After several days at 400 millimolar NaCl, when leaves showed features typical of CAM, overall turgor pressure and leaf mass per unit area had increased above the levels before onset of the salt treatment, and diurnal alterations in leaf water content were reduced. Net carbon gain during photoperiods and average intercellular CO2 partial pressures at which net CO2 uptake occurred, progressively decreased upon salinization. Reversible diurnal depressions in leaf conductance and net CO2 uptake, with minima recorded in the middle of the photoperiods, preceded the occurrence of nocturnal net CO2 uptake. During these reductions, intercellular CO2 partial pressure and rates of photosynthetic electron transport decreased. With advancing age, leaves of plants grown under nonsaline conditions exhibited progressively greater diurnal reductions in turgor pressure and developed a low degree of CAM activity.  相似文献   

19.
Detached leaf is in the state of increasing water deficit; it is a good experimental model for looking into the hardening effect of adaptation of eight-day-old maize (Zea mays L.) seedlings to short-term drought (five days without watering). The light stage of photosynthesis and photosynthetic CO2/H2O exchange in detached leaves were studied. Specific surface density of leaf tissue (SSDL), the content of chlorophylls a and b, proline, MDA as well as photosynthetic parameters: quantum yield of photosystem II fluorescence, assimilation of CO2, and transpiration at room temperature and light saturation (density of PAR quantum flux of 2000 μmol/(m2 s)) at normal and half atmospheric CO2 concentration were determined. The leaves of seedlings exposed to short-term drought differed from control material by a greater SSDL and higher content of proline. The hardening effect of the stress agent on the dark stage of photosynthesis was detected; it was expressed in the maintenance of the higher photosynthetic CO2 assimilation against control material due to the elevation of stomatal conductance for CO2 diffusing into the leaf. Judging from the lack of differences in the MDA content, short-term drought did not injure photosynthetic membranes. In detached leaves of experimental maize seedlings, photosynthesis was maintained on a higher level than in control material.  相似文献   

20.
Most organisms inhabiting earth feed directly or indirectly on the products synthesized by the reaction of photosynthesis, which at the current atmospheric CO2 levels operates only at two thirds of its peak efficiency. Restricting the photorespiratory loss of carbon and thereby improving the efficiency of photosynthesis is seen by many as a good option to enhance productivity of food crops. Research during last half a century has shown that several plant species developed CO2-concentrating mechanism (CCM) to restrict photorespiration under lower concentration of available CO2. CCMs are now known to be operative in several terrestrial and aquatic plants, ranging from most advanced higher plants to algae, cyanobacteria and diatoms. Plants with C4 pathway of photosynthesis (where four-carbon compound is the first product of photosynthesis) or crassulacean acid metabolism (CAM) may consistently operate CCM. Some plants however can undergo a shift in photosynthetic metabolism only with change in environmental variables. More recently, a shift in plant photosynthetic metabolism is reported at high altitude where improved efficiency of CO2 uptake is related to the recapture of photorespiratory loss of carbon. Of the divergent CO2 assimilation strategies operative in different oraganisms, the capacity to recapture photorespiratory CO2 could be an important approach to develop plants with efficient photosynthetic capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号