首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of the fluorescent probe 4,4'-bis[8-(phenylamino)naphthalene-1-sulfonate] (bis-ANS) to human alpha- and gamma-thrombins was investigated. Bis-ANS binds in a 1:1 complex to both forms of the enzyme, with Kd = 14.8 +/- 2.2 microM and 5.8 +/- 1.0 microM for alpha- and gamma-thrombin, respectively, at pH 7.0 [25 mM tris(hydroxymethyl)aminomethane, 0.15 M NaC1]. Fluorescence changes upon complexation included a considerable (approximately 30-nm) blue shift in the fluorescence emission maximum as well as a dramatic increase in the fluorescence emission intensity: a 70-fold enhancement was observed with alpha-thrombin vs. a approximately 220-fold enhancement with gamma-thrombin. Proflavin was not displaced upon bis-ANS binding. The unknown thrombin effectors ATP, Ca(II)ATP, Co(III)ATP, phosphate, and pyrophosphate bound with enhancement of the fluorescence of the bis-ANS-alpha-thrombin complex. The two inhibitors benzamidine and p-chlorobenzylamine as well as heparin caused decreases in bis-ANS-thrombin fluorescence: valerylamidine had no effect on the fluorescence of the bis-ANS-thrombin complex. Kinetic measurements with two chromogenic substrates, S-2238 and S-2160, indicated that bis-ANS acts as a partial noncompetitive inhibitor of thrombin amidase activity. The kinetic evidence combined with the ligand binding results suggests that bis-ANS does not overlap the catalytic site. The fluorophore ANS complexed with equal affinity to both alpha- and gamma-thrombins (Kd = 24 +/- 4 microM); however, the gamma-thrombin-ANS complex emission at 470 nm was enhanced 26% more than that for the alpha form.  相似文献   

2.
The effect of denaturants such as urea, sodium dodecylsulphate (SDS), guanidinium hydrochloride (Gu.HCl) on the structure of enzyme 3-hydroxybenzoate-6-hydroxylase was studied using intrinsic fluorescence and far and near-UV-CD spectroscopic techniques. Also, activity profiles of the enzyme, as a function of increasing concentrations of denaturants were studied. The far-UV CD spectrum of the enzyme did not show appreciable alterations in the presence of urea, SDS or Gu.HCl, thereby suggesting that the protein does not undergo gross conformational changes in its alpha-helical secondary structure. The treatment of enzyme with 2 M urea resulted in almost complete loss of catalytic activity, accompanied by the reduction of emission fluorescence of enzyme. Similarly, treatment with 0.01% SDS also caused almost complete loss of activity and quenching of enzyme fluorescence as well as a red shift in the emission peak. In addition, reduction in the intensity of near-UV-CD spectrum, especially at 280 nm was observed. About 70% of the activity was lost by treatment with 20 mM Gu.HCl, accompanied by quenching of intrinsic fluorescence of the enzyme. The change in intrinsic fluorescence of the enzyme in the presence of 5 mM-100 mM Gu.HCI could be correlated to progressive loss of catalytic activity. Thus, intrinsic fluorescence (due to tryptophan residues) could be used as an effective probe to provide an insight into the relation between the activity and subtle conformational changes of the enzyme. The results suggested that denaturants caused very slight conformational changes in the enzyme that perturbed the microenvironment of aromatic amino acid residues such as tryptophan accompanied by reduction or loss of catalytic activity.  相似文献   

3.
UDP-galactose 4-epimerase from yeast (Kluyveromyces fragilis) is a homodimer of total molecular mass 150 kDa having possibly one mole of NAD/dimer acting as a cofactor. The molecule could be dissociated and denatured by 8 M urea at pH 7.0 and could be functionally reconstituted after dilution with buffer having extraneous NAD. The unfolded and refolded equilibrium intermediates of the enzyme between 0-8 M urea have been characterized in terms of catalytic activity, NADH like characteristic coenzyme fluorescence, interaction with extrinsic fluorescence probe 1-anilino 8-naphthelene sulphonic acid (ANS), far UV circular dichroism spectra, fluorescence emission spectra of aromatic residues and subunit dissociation. While denaturation monitored by parameters associated with active site region e.g. inactivation and coenzyme fluorescence, were found to be cooperative having delta G between -8.8 to -4.4 kcals/mole, the overall denaturation process in terms of secondary and tertiary structure was however continuous without having a transition point. At 3 M urea a stable dimeric apoenzyme was formed having 65% of native secondary structure which was dissociated to monomer at 6 M urea with 12% of the said structure. The unfolding and refolding pathways involved identical structures except near the final stage of refolding where catalytic activity reappeared.  相似文献   

4.
The enzyme rhodanese contains two globular domains connected by a tether region and associated by strong hydrophobic interactions. The protein has proven to be very difficult to refold without assistance to prevent oxidation and aggregation. For this study, the active site cysteine 247, near the interdomain region, was modified with the environmentally sensitive fluorescent probe, 2-(4'-(iodoacetamido)anilino)naphthalene-6-sulfonic acid (IAANS), to yield a derivative that reversibly unfolds. Structural transitions during urea unfolding/refolding were complex and multiphasic. Increasing urea concentrations increased the IAANS fluorescence intensity and polarization. Both values reached maxima at approximately 4 m urea, where there is a concomitant large exposure of hydrophobic sites as reported by both IAANS and the noncovalent fluorescent probe, bis-ANS. The exposure of the hydrophobic sites arises from the decrease in strong interaction between the domain interfaces, which lead to their partial separation. This correlates with the loss of activity of the unlabeled enzyme. Above 4.5 m urea, there is progressive loss of rigid, hydrophobic surfaces, and both fluorescence and polarization of IAANS decrease, with accompanying loss of secondary structure. These results are consistent with a folding model in which there is an initial, rapid hydrophobic collapse of the denatured form to an intermediate with native like secondary structure, with exposed interdomain, hydrophobic surfaces. This step is followed by adjustment of the domain-domain interactions and the proper positioning of reduced cysteine 247 at the active site.  相似文献   

5.
The effects of urea and several methylamine solutes on the catalytic stability and aggregation properties of rabbit muscle phosphofructokinase were assessed at physiologically realistic concentrations of the solutes under several pH and temperature regimes. The loss of catalytic activity observed under conditions of pH-induced cold lability was significantly reduced in the presence of trimethylamine-N-oxide, N-trimethylglycine and N-methylglycine (order of decreasing effectiveness). The concentration-dependent methylamine stabilization of the enzyme, seen with as little as 50 mM trimethylamine-N-oxide, was accompanied by increased aggregation of the enzyme to molecular weights greater than the tetramer (polytetramer) as solute concentration was raised to 400 mM. At pH 6.5-6.7 and 25 degrees C, concentrations of urea greater than 25 mM promoted a time-dependent inactivation of the enzyme which was enhanced at lower temperatures. The urea sensitivity of the enzyme exhibited with 0.8 M urea for 1 h at pH 8.0 did not result in measurable inactivation. The fluorescence emission wavelength maximum of the enzyme was shifted to longer wavelengths and the fluorescence intensity was increased as pH was lowered to 7.0, suggesting the occurrence of a protein conformation change as specific amino acid residues of the tetramer became protonated. Measurements of enzyme light scattering indicated that perturbation by urea was correlated with tetramer dissociation, which was irreversible by dialysis at 25 degrees C. The urea and methylamine influences on phosphofructokinase activity and structure were not counteracting. The synergistic interactions among pH, temperature, and solutes observed with phosphofructokinase are compared to effects on other associating-dissociating protein systems in order to evaluate possible mechanisms of action of these low molecular weight solutes.  相似文献   

6.
The head of the P22 bacteriophage is interrupted by a unique dodecameric portal vertex that serves as a conduit for the entrance and exit of the DNA. Here, the in vitro unfolding/refolding processes of the portal protein of P22 were investigated at different temperatures (1, 25, and 37 degrees C) through the use of urea and high hydrostatic pressure (HHP) combined with spectroscopic techniques. We have characterized an intermediate species, IU, which forms at 25 degrees C during unfolding or refolding of the portal protein in 2-4 M urea. IU readily forms amorphous aggregates, rendering the folding process irreversible. On the other hand, at 1 degrees C, a two-state process is observed (DeltaGf = -2.2 kcal/mol). When subjected to HHP at 25 or 37 degrees C, the portal monomer undergoes partial denaturation, also forming an intermediate species, which we call IP. IP also tends to aggregate but, differently from IU, aggregates into a ring-like structure as seen by size-exclusion chromatography and electron microscopy. Again, at 1 degrees C the unfolding induced by HHP proved to be reversible, with DeltaGf = -2.4 kcal/mol and DeltaV = 72 mL/mol. Interestingly, at 25 degrees C, the binding of the hydrophobic probe bis-ANS to the native portal protein destabilizes it and completely blocks its aggregation under HHP. These data are relevant to the process by which the portal protein assembles into dodecamers in vivo, since species such as IP must prevail over IU in order to guarantee the proper ring formation.  相似文献   

7.
The cytosolic malic enzyme from the pigeon liver is sensitive to chemical denaturant urea. When monitored by protein intrinsic fluorescence or circular dichroism spectral changes, an unfolding of the enzyme in urea at 25 degrees C and pH 7.4 revealed a biphasic phenomenon with an intermediate state detected at 4-5 m urea. The enzyme activity was activated by urea up to 1 m but was completely lost before the intermediate state was detected. This suggests that the active site region of the enzyme was more sensitive to chemical denaturant than other structural scaffolds. In the presence of 4 mm Mn(2+), the urea denaturation pattern of malic enzyme changed to monophasic. Mn(2+) helped the enzyme to resist phase I urea denaturation. The [urea](0.5) for the enzyme inactivation shifted from 2.2 to 3.8 m. Molecular weight determined by the analytical ultracentrifuge indicated that the tetrameric enzyme was dissociated to dimers in the early stage of phase I denaturation. In the intermediate state at 4-5 m urea, the enzyme showed polymerization. However, the polymer forms were dissociated to unfolded monomers at a urea concentration greater than 6 m. Mn(2+) retarded the polymerization of the malic enzyme. Three mutants of the enzyme with a defective metal ligand (E234Q, D235N, E234Q/D235N) were cloned and purified to homogeneity. These mutant malic enzymes showed a biphasic urea denaturation pattern in the absence or presence of Mn(2+). These results indicate that the Mn(2+) has dual roles in the malic enzyme. The metal ion not only plays a catalytic role in stabilization of the reaction intermediate, enol-pyruvate, but also stabilizes the overall tetrameric protein architecture.  相似文献   

8.
The dissociation of D-ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach, which consists of eight large subunits (L, 53 kDa) and eight small subunits (S, 14 kDa) and thus has a quarternary structure L8S8, has been investigated using a variety of physical techniques. Gel chromatography using Sephadex G-100 indicates the quantitative dissociation of the small subunit S from the complex at 3-4 M urea (50 mM Tris/Cl pH 8.0, 0.5 mM EDTA, 1 mM dithiothreitol and 5 mM 2-mercaptoethanol). The dissociated S is monomeric. Analytical ultracentrifuge studies show that the core of large subunits, L, remaining at 3-4 M urea sediments with S20, w = 15.0 S, whereas the intact enzyme (L8S8) sediments with S20, w = 17.7S. The observed value is consistent with a quarternary structure L8. The dissociation reaction in 3-4 M urea can thus be represented by L8S8----L8 + 8S. At urea concentrations c greater than 5 M the L8 core dissociates into monomeric, unfolded large subunits. A large decrease in fluorescence emission intensity accompanies the dissociation of the small subunit S. This change is completed at 4 M urea. No changes are observed upon dissociating the L8 core. The kinetics of dissociation of the small subunit, as monitored by fluorescence spectroscopy, closely follow the kinetics of loss of carboxylase activity of the enzyme. Studies of the circular dichroism of D-ribulose-1,5-bisphosphate carboxylase in the wavelength region 200-260 nm indicate two conformational transitions. The first one ([0]220 from -8000 to -3500 deg cm2 dmol-1) is completed at 4 M urea and corresponds to the dissociation of the small subunit and coupled conformational changes. The second one ([0]220 from -3500 to -1200 deg cm2 dmol-1) is completed at 6 M urea and reflects the dissociation and unfolding of large subunits from the core. The effect of activation of the enzyme by addition of MgCl2 (10 mM) and NaHCO3 (10 mM) on these conformational transitions was investigated. The first conformational transition is then shifted to higher urea concentrations: a single transition ([0]220 from -8000 to -1200 deg cm2 dmol-1) is observed for the activated enzyme. From the urea dissociation experiments we conclude that both large (L) and small (S) subunits are important for carboxylase activity of spinach D-ribulose-1,5-bisphosphate carboxylase: the L-S subunit interactions tighten upon activation and dissociation of S leads to a coupled, proportional loss of enzyme activity.  相似文献   

9.
Snake venoms contain a large number of hemostatically active proteins that are structurally related to Ca(2+)-dependent animal lectins. These proteins, called C-type lectin-like proteins (CLPs), are generally found as heterodimers composed of two homologous subunits linked by a disulfide bond. Here, bothrojaracin (BJC), a CLP from Bothrops jararaca venom that is also a thrombin inhibitor, has been used as a model to study the subunit dissociation and unfolding of CLPs from snake venom. Dithiothreitol (DTT) up to 10 mM produces minor effects on the tertiary structure and activity of BJC. On the other hand, chromatographic studies and fluorescence polarization measurements indicate that the interchain disulfide bond is disrupted by DTT, although the dimeric association is maintained. Treatment of BJC with urea produces a progressive red shift in the emission spectra of the tryptophan residues, and circular dichroism measurements show that BJC retains significant secondary structure in the presence of 8 M urea, suggesting only partial unfolding. The effects of urea are fully reversible, as there is complete recovery of BJC activity after removal of the denaturing agent. Addition of DTT to a protein sample previously treated with 8 M urea produces a slightly larger spectral shift than that observed with urea alone. Furthermore, in this condition BJC loses its secondary structure, and its subunits are dissociated. After removal of urea and DTT, BJC is inactive toward thrombin, suggesting the irreversibility of their combined action. Altogether, our data show that (i) BJC is highly resistant to urea or DTT effects, requiring the simultaneous action of both agents to fully denature the protein, and (ii) BJC monomers are tightly associated, and the presence of DTT combined with high urea concentrations is necessary to disrupt them. On the basis of these results we propose the first denaturation model for a CLP from snake venom.  相似文献   

10.
Kynuramine, a fluorescent substrate and probe of plasma amine oxidase   总被引:1,自引:0,他引:1  
The fluorescence substrate kynuramine was used as a probe of the catalytic site of plasma amine oxidase. Under anaerobic conditions, the binding of kynuramine causes several spectroscopic changes. The Stokes shift (deltav = 5326 cm-) associated with binding of the substrate to the enzyme can be attributed to nonpolar properties of the binding site, whereas the increase in emission anisotropy (A = 33) indicates rigid attachment of the substrate to the enzyme. The fluorescence enhancement that follows the binding of substrate was used to determine the association constant (Ka). The enzyme plasma amine oxidase binds only 1 molecule of substrate with a Ka = 1.8 X 10(5) M-1 under anaerobic conditions. The use of fluorescence substrates seems to offer the possibility of monitoring conformational changes occurring prior to the catalytic event.  相似文献   

11.
Myosin is an asymmetric protein that comprises two globular heads (S1) and a double-stranded alpha-helical rod. We have investigated the effects of urea and the methylamines trimethylamine oxide (TMA-O) and glycine betaine (betaine) on activity and structure of skeletal muscle myosin. K(+) EDTA ATPase activity of myosin was almost completely inhibited by urea (2M); TMA-O stimulated myosin activity, whereas betaine had no effect. When combined with urea (0-2M), TMA-O or betaine (1 M) effectively protected the ATPase activity of myosin against inhibition. Intrinsic fluorescence measurements showed that in urea or TMA-O (0-2M), there were no shifts in the center of mass of the fluorescence spectrum of myosin, despite a decrease in fluorescence intensity. However, these osmolytes at concentrations above 2M produced a red shift in the emission spectrum. Betaine alone did not alter the center of mass at any concentration tested up to 5.2M. Thus, modifications in ATPase activity induced by low concentrations of solutes (<2M) are not directly correlated with the modifications in myosin structure detected by fluorescence. Both methylamines (>or=1M) were also able to protect myosin structure against urea-induced effects (2-8M). Protection was not observed for S1, supporting the hypothesis that these osmolytes have a biphasic effect on myosin: at lower concentrations there is an effect on the globular portion (S1), and at higher concentrations there is an effect on the coiled-coil (rod) portion of myosin.  相似文献   

12.
The catalytic competence of the natural thrombin mutant with deletion of the Lys9 residue in the A-chain (deltaK9) was found to be severely impaired, most likely due to modification of the 60-loop conformation and catalytic triad geometry, as supported by long molecular dynamics (MD) simulations in explicit water solvent. In this study, the pH dependence of the catalytic activity and binding of the low-molecular mass inhibitor N-alpha-(2-naphthylsulfonyl-glycyl)-4-amidinophenylalanine-piperidine (alpha-NAPAP) to the wild-type (WT) and deltaK9 thrombin forms were investigated, along with their overall structural stabilities and conformational properties. Two ionizable groups were found to similarly affect the activity of both thrombins. The pKa value of the first ionizable group, assigned to the catalytic His57 residue, was found to be 7.5 and 6.9 in ligand-free deltaK9 and WT thrombin, respectively. Urea-induced denaturation studies showed higher instability of the deltaK9 mutant compared with WT thrombin, and disulfide scrambling experiments proved weakening of the interchain interactions, causing faster release of the reduced A-chain in the mutant enzyme. The sodium ion binding affinity was not significantly perturbed by Lys9 deletion, although the linked increase in intrinsic fluorescence was lower in the mutant. Essential dynamics (ED) analysis highlighted different conformational properties of the two thrombins in agreement with the experimental conformational stability data. Globally, these findings enhanced our understanding of the perturbations triggered by Lys9 deletion, which reduces the overall stability of the molecule, weakens the A-B interchain interactions, and allosterically perturbs the geometry and protonation state of catalytic residues of the enzyme.  相似文献   

13.
To study molecular-mass dependence of dextran sulfate (DS) for interactions with several plasma proteins, a commercial preparation of the sulfated polysaccharide was fractionated by gel filtration chromatography into six subfractions with relatively different molecular masses. Simple two-component systems were available to measure the interactions of the proteins with the subfractions of DS. These were done to determine the rates of time-dependent changes in intrinsic fluorescence of thrombin and fibrinogen, and the enzyme inactivation in the presence of DS. Their interactions were also confirmed in three-component systems, in which the interactions of DS with thrombin and fibrinogen were measured by the displaced binding by FTC-heparin, and DS-enhanced proteolysis by chymotrypsin, respectively. Moreover, the neutralization of factor Xa by antithrombin III (AT III) depended on the molecular mass of DS. All the results obtained indicate that most of the general interactions of thrombin, fibrinogen, and probably AT III increased with increasing molecular mass of DS.  相似文献   

14.
R N Puri  D Bhatnagar  R Roskoski 《Biochemistry》1985,24(23):6499-6508
The catalytic subunit of adenosine cyclic 3',5'-monophosphate dependent protein kinase from bovine skeletal muscle was rapidly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics, and the second-order rate constant was 1.1 X 10(2) M-1 s-1. Absorbance and fluorescence spectroscopic data were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme). The reaction between the catalytic subunit and o-phthalaldehyde was not reversed by the addition of reagents containing free primary amino and sulfhydryl functions following inactivation. The reaction, however, could be arrested at any stage during its progress by the addition of an excess of cysteine or less efficiently by homocysteine or glutathione. The catalytic subunit was protected from inactivation by the presence of the substrates magnesium adenosine triphosphate and an acceptor serine peptide substrate. The decrease in fluorescence emission intensity of incubation mixtures containing iodoacetamide- or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified catalytic subunit and o-phthalaldehyde paralleled the loss of phosphotransferase activity. Catalytic subunit denatured with urea failed to react with o-phthalaldehyde. Inactivation of the catalytic subunit by o-phthalaldehyde is probably due to the concomitant modification of lysine-72 and cysteine-199. The proximal distance between the epsilon-amino function of the lysine and the sulfhydryl group of the cysteine residues involved in isoindole formation in the native enzyme is estimated to be approximately 3 A. The molar transition energy of the catalytic subunit-o-phthalaldehyde adduct was 121 kJ/mol and compares favorably with a value of 127 kJ/mol for the 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl)isoindole in hexane, indicating that the active site lysine and cysteine residues involved in formation of the isoindole derivative of the catalytic subunit are located in a hydrophobic environment. o-Phthalaldehyde probably acts as an active site specific reagent for the catalytic subunit.  相似文献   

15.
Pyridoxal kinase has been purified 2000-fold from pig brain. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. The interactions of the substrate pyridoxal and the inhibitor N-dansyl-2-oxopyrrolidine (dansyl = 5-dimethylaminonaphthalene-1-sulfonyl) with the catalytic site were examined by means of fluorescence spectroscopy. The increase in emission anisotropy that follows the binding of pyridoxal to the kinase was used to determine the equilibrium dissociation constant. Pyridoxal kinase binds one molecule of substrate with a Kd = 11 microns at pH 6. The emission anisotropy spectrum of bound pyridoxal reveals that the substrate is not rigidly trapped by the protein matrix. N-Dansyl-2-oxopyrrolidine is a competitive inhibitor with respect to ATP at saturating concentrations of pyridoxal. It binds to the enzyme with a dissociation constant of 6 microns. N-Dansyl-2-oxopyrrolidine is immobilized by strong interactions with the enzyme, but it is displaced from the catalytic site by ATP. The results are consistent with the hypothesis that N-dansyl-2-oxopyrrolidine binds at the nucleotide binding site of pyridoxal kinase.  相似文献   

16.
The structurally related glutathione S-transferase isoforms GSTA1-1 and GSTA4-4 differ greatly in their relative catalytic promiscuity. GSTA1-1 is a highly promiscuous detoxification enzyme. In contrast, GSTA4-4 exhibits selectivity for congeners of the lipid peroxidation product 4-hydroxynonenal. The contribution of protein dynamics to promiscuity has not been studied. Therefore, hydrogen/deuterium exchange mass spectrometry (H/DX) and fluorescence lifetime distribution analysis were performed with glutathione S-transferases A1-1 and A4-4. Differences in local dynamics of the C-terminal helix were evident as expected on the basis of previous studies. However, H/DX demonstrated significantly greater solvent accessibility throughout most of the GSTA1-1 sequence compared with GSTA4-4. A Phe-111/Tyr-217 aromatic-aromatic interaction in A4-4, which is not present in A1-1, was hypothesized to increase core packing. "Swap" mutants that eliminate this interaction from A4-4 or incorporate it into A1-1 yield H/DX behavior that is intermediate between the wild type templates. In addition, the single Trp-21 residue of each isoform was exploited to probe the conformational heterogeneity at the intrasubunit domain-domain interface. Excited state fluorescence lifetime distribution analysis indicates that this core residue is more conformationally heterogeneous in GSTA1-1 than in GSTA4-4, and this correlates with greater stability toward urea denaturation for GSTA4-4. The fluorescence distribution and urea sensitivity of the mutant proteins were intermediate between the wild type templates. The results suggest that the differences in protein dynamics of these homologs are global. The results suggest also the possible importance of extensive conformational plasticity to achieve high levels of functional promiscuity, possibly at the cost of stability.  相似文献   

17.
A multiwavelength fluorescence probe is proposed for in situ monitoring of Eschscholtzia californica and Catharanthus roseus plant cell cultures. The potential of the probe as a tool for real-time estimation of biomass and production in secondary metabolites has been studied. The probe excitation range is 270-550 nm and the emission range is 310-590 nm, with a step of 20 nm for both excitation and emission filters. Many endogenous fluorophores such as NAD(P)H, riboflavins (riboflavin and derivatives such as FMN, FAD), tryptamine and tryptophan, and fluorescent secondary metabolites were analyzed simultaneously. NAD(P)H fluorescence signal (350/450 nm) showed to be an adequate signal for estimating cells activity. Riboflavins fluorescence signal (450/530 nm) followed C. roseus cell concentration both for the growth phase and after elicitation with jasmonic acid. Fluorescence from the alkaloids interfered with NAD(P)H signal during the production phase. For C. roseus, tryptophan, tryptamine, ajmalicine and serpentine were monitored by the probe. For E. californica, fluorescence from alkaloids overlapped with riboflavins preventing from using the probe to follow cell growth but global alkaloids production could be followed using the probe.  相似文献   

18.
Low concentrations of urea (1.2 M) stimulated the activity of endo-xylanase from Chainia by 30%. Subtle structural changes in the monomeric protein were reflected in the secondary and tertiary structure of the enzyme as monitored by fluorescence and circular dichroism. Changes in lambda(max) of emission, the fluorescence intensity and the Stern-Volmer quenching constants for acrylamide, measured in the presence of urea, indicated changes in the microenvironment of the Trp residues, suggesting alterations in tertiary structure. The ellipticity changes at 220 nm and Selcon analysis reflected changes in the content of beta-sheet while both the near- and far-UV CD spectra indicated alterations in the secondary and tertiary structure of the protein in presence of urea. The dissociation constant values (K(d)) show very little change in the affinity of the enzyme for the substrate while the k(cat) values suggest enhanced turnover of the substrate in presence of urea. We suggest that low urea concentrations perturb the conformational state of xylanase leading to an open and a more flexible structure, resulting in enhanced catalytic rates.  相似文献   

19.
The weight-average molecular weight (Mw) and intrinsic viscosity ([eta]) of the alpha-(1-->3)-D-glucan (L-FV-II) from Lentinus edodes in 0.5 and 1.0 M NaOH aqueous solution containing urea, were studied by light scattering and viscometry. The Mw value of the glucan decreased with increase of the urea and NaOH concentration. A strong intermolecular hydrogen bonding confers water-insolubility on the glucan, but NaOH and especially urea, broke this hydrogen bonding leading to enhanced water-solubility. Use of 1.0 M urea-1.0 M NaOH as solvent broke not only intermolecular hydrogen bonds but also partial covalent bonds of the alpha-glucan in aqueous solution, resulting in a decrease of Mw and [eta]. The urea and NaOH concentrations, storage time with stirring, and mode of preparation of the polysaccharide in aqueous solution significantly affected the determination of Mw and [eta]. The dependences of specific rotation and fluorescence emission ratio of a probe on urea concentration showed that a change in the molecular conformation of the alpha-glucan in 0.5 M NaOH aqueous solution containing urea occurred in the range 0.4-0.6 M urea. The 0.5 M urea-0.5 M NaOH aqueous solution is a suitable solvent for the glucan, and the Mw and [eta] values obtained were 5.21 x 10(5) and 148 cm3 g(-1), respectively. Degradation of the glucan was obvious after storage for 15 months.  相似文献   

20.
In glycoside hydrolase family 66 (see http://afmb.cnrs-mrs.fr/CAZY/), cyclodextran glucanotransferase (CITase) is the only transglycosylation enzyme, all the other family 66 enzymes being dextranases. To analyze the catalytic amino acids of CITase, we modified CITase chemically from the T-3040 strain of Bacillus circulans with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). EDC inactivated the enzyme by following pseudo-first order kinetics. In addition, the substrates of an isomaltooligosaccharide and a cyclodextran inhibited EDC-induced enzyme inactivation, implicating the carboxyl groups of CITase as the catalytic amino acids of the enzyme. When two conserved aspartic acid residues, Asp145 and Asp270, were replaced with Asn in T-3040 mature CITase, CIT-D270N was completely inactive, and CIT-D145N had reduced activity. The V(max) of CIT-D145N was 1% of that of wild-type CITase, whereas the K(m) of CIT-D145N was about the same as that of the wild-type enzyme. These findings indicate that Asp145 and Asp270 play an important role in the enzymatic reaction of T-3040 CITase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号