首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The Tnfrh1 gene (gene symbol Tnfrsf23) is located near one end of a megabase-scale imprinted region on mouse distal chromosome 7, about 350 kb distant from the nearest known imprinting control element. Within 20 kb of Tnfrh1 is a related gene called Tnfrh2 (Tnfrsf22) These duplicated genes encode putative decoy receptors in the tumor necrosis factor (TNF) receptor family. Although other genes in this chromosomal region show conserved synteny with genes on human Chr11p15.5, there are no obvious human orthologues of Tnfrh1 or Tnfrh2.  相似文献   

2.
3.

Background  

Genomic imprinting occurs in both marsupial and eutherian mammals. The CDKN1C and IGF2 genes are both imprinted and syntenic in the mouse and human, but in marsupials only IGF2 is imprinted. This study examines the evolution of features that, in eutherians, regulate CDKN1C imprinting.  相似文献   

4.

Background  

Proximal chromosome 15q is implicated in neurodevelopmental disorders including Prader-Willi and Angelman syndromes, autistic disorder and developmental abnormalities resulting from chromosomal deletions or duplications. A subset of genes in this region are subject to genomic imprinting, the expression of the gene from only one parental allele.  相似文献   

5.

Background  

Defensins, small endogenous peptides with antimicrobial activity, are pivotal components of the innate immune response. A large cluster of defensin genes is located on human chromosome 8p; among them the beta defensin 1 (DEFB1) promoterhas been extensively studied since discovery that specific polymorphisms and haplotypes associate with asthma and atopy, susceptibility to severe sepsis, as well as HIV and Candida infection predisposition.  相似文献   

6.
Mammalian genes subject to genomic imprinting often form clusters and are regulated by long-range mechanisms. The distal imprinted domain of mouse chromosome 7 is orthologous to the Beckwith-Wiedemann syndrome domain in human chromosome 11p15.5 and contains at least 13 imprinted genes. This domain consists of two subdomains, which are respectively regulated by an imprinting center. We here report the finished-quality sequence of a 0.6-Mb region encompassing the more centromeric subdomain. The sequence contains four imprinted genes (Ascl2/Mash2, Ins2, Igf2 and H19) and reveals previously unidentified CpG islands and tandem repeats, which may be features of imprinted genes. Most interestingly, a unique 210-kb segment consisting almost exclusively of tandem repeats and retroelements is identified. This segment, located between Th and Ins2, has features of heterochromatin-forming DNA and is highly methylated at CpG sites. The segment exhibits asynchronous replication on the parental chromosomes, a feature of the imprinted domains. We propose that this repeat segment could serve either as a boundary between the two subdomains or as a target for epigenetic chromatin modifications that regulate imprinting.  相似文献   

7.

Background  

Cdkn1c encodes an embryonic cyclin-dependant kinase inhibitor that acts to negatively regulate cell proliferation and, in some tissues, to actively direct differentiation. This gene, which is an imprinted gene expressed only from the maternal allele, lies within a complex region on mouse distal chromosome 7, called the IC2 domain, which contains several other imprinted genes. Studies on mouse embryos suggest a key role for genomic imprinting in regulating embryonic growth and this has led to the proposal that imprinting evolved as a consequence of the mismatched contribution of parental resources in mammals.  相似文献   

8.

Background  

Brain-expressed genes that were created in primate lineage represent obvious candidates to investigate molecular mechanisms that contributed to neural reorganization and emergence of new behavioural functions in Homo sapiens. PMCHL1 arose from retroposition of a pro-melanin-concentrating hormone (PMCH) antisense mRNA on the ancestral human chromosome 5p14 when platyrrhines and catarrhines diverged. Mutations before divergence of hylobatidae led to creation of new exons and finally PMCHL1 duplicated in an ancestor of hominids to generate PMCHL2 at the human chromosome 5q13. A complex pattern of spliced and unspliced PMCHL RNAs were found in human brain and testis.  相似文献   

9.
A human hair cuticle ultrahigh-sulphur keratin (UHSK) gene (KRN1) has been mapped by Southern analysis of a somatic cell hybrid panel and by in situ hybridization. A probe containing the coding region of this gene mapped to 11pter->11q21 using the hybrid cell panel and on in situ hybridization mapped to two regions on chromosome 11: the distal part of 11p15, most likely 11p15.5, and the distal part of 11q13, most likely 11q13.5. A probe from the 3 non-coding region of KRN1 mapped to 11q13.5 indicating that this was the map location of the cloned gene. The sequence of 11p15.5 is termed KRN1-like (KRN1L). The results reveal that the cuticle UHSK gene family is clustered in the human genome. Present address: The Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3, 9DU, United Kingdom.  相似文献   

10.
STIM1 (GOK) maps to a region of human Chromosome (Chr) 11p15.5 that is implicated in several embryonal tumors, and some evidence indicates that STIM1 may have a growth suppressor role in rhabdomyosarcoma. In this study we have mapped the murine homolog, Stim1, to the same position as Hbb on distal mouse Chr 7. This region is separated by 20 cM from the region of distal Chr 7 that contains Igf2, H19, and other imprinted genes. Using strain-specific polymorphisms, we have shown that Stim1 is expressed from both parental alleles in fetal and neonatal mouse tissues. Similar analyses of human Wilms' tumor and normal kidney tissues demonstrated biallelic expression of STIM1 in the majority of samples. These data demonstrate that Stim1 expression is not regulated by genomic imprinting in either mouse or human tissues. Thus, if STIM1 is a tumor suppressor at 11p15.5, loss of expression is not due to imprinting effects. Received: 23 January 1998 / Accepted: 10 April 1998  相似文献   

11.
Using a panel of patient cell lines with chromosomal breakpoints, we constructed a physical map for the short arm of human chromosome 11. We focused on 11p15, a chromosome band harboring at least 25 known genes and associated with the Beckwith-Wiedemann syndrome, several childhood tumors, and genomic imprinting. This underlines the need for a physical map for this region. We divided the short arm of chromosome 11 into 18 breakpoint regions, and a large series of new and previously described genes and markers was mapped within these intervals using fluorescence in situ hybridization. Cosmid fingerprint analysis showed that 19 of these markers were included in cosmid contigs. A detailed 10-Mb pulsed-field physical map of the region 11p15.3-pter was constructed. These three different approaches enabled the high-resolution mapping of 210 markers, including 22 known genes.  相似文献   

12.
Goldberg M  Wei M  Yuan L  Murty VV  Tycko B 《Human genetics》2003,112(4):334-342
At least eight genes clustered in 1 Mb of DNA on human chromosome (Chr) 11p15.5 are subject to parental imprinting, with monoallelic expression in one or more tissues. Orthologues of these genes show conserved linkage and imprinting on distal Chr 7 of mice. The extended imprinted region has a bipartite structure, with at least two differentially methylated DNA elements (DMRs) controlling the imprinting of two sub-domains. We previously described three biallelically expressed genes ( MRPL23, 2G7 and TNNT3) in 100 kb of DNA immediately downstream of the imprinted H19 gene, suggesting that H19 marks one border of the imprinted region. Here we extend this analysis to two additional downstream genes, HRAS and MUCDHL (mu-protocadherin). We find that these genes are biallelically expressed in multiple fetal and adult tissues, both in humans and in mice. The mouse orthologue of a third gene, DUSP8, located between H19 and MUCDHL, is also expressed biallelically. The DMR immediately upstream of H19 frequently shows a net gain of methylation in Wilms tumors, either via Chr 11p15.5 loss of heterozygosity (LOH) or loss of imprinting (LOI), but changes in methylation in CpG-rich sequences upstream and within the MUCDHL gene are rare in these tumors and do not correlate with LOH or LOI. These findings are further evidence for a border of the imprinted region immediately downstream of H19, and the data allow the construction of an imprinting map that includes more than 20 genes, distributed over 3 Mb of DNA on Chr 11p15.5.  相似文献   

13.
Summary The physical localization of sequences homologous to three cloned genes was determined by in situ hybridization to metaphase chromosomes. Previous work had assigned the skeletal myosin heavy chain gene cluster (Myh), the functional locus for the cellular tumor antigen p53 (Trp53-1), and the cellular homologue of the viral erb-B oncogene (Erbb) toMus musculus chromosome 11 (MMU11). Our results provide regional assignments ofMyh andTrp53-1 to chromosome bands B2C, and ofErbb to bands A1A4. Taken together with in situ mapping of three other loci on MMU 11 (Hox-2 homeobox-containing gene cluster, theSparc protein, and theColla-1 collagen gene), which have been reported elsewhere, these data allowed us to construct a physical map of MMU11 and to compare it with the linkage map of this chromosome. The map positions of the homologous genes on human chromosomes suggest evolutionary relationships of distinct regions of MMU11 with six different human chromosome arms: 1p, 5q, 7p, 16p, 17p, and 17q. The delineation of conserved chromosome regions has important implications for the understanding of karyotype evolution in mammalian species and for the development of animal models of human genetic diseases.  相似文献   

14.
We have recently identified a novel RING finger protein expressed in the rat brain, which associates with myosin V and α-actinin-4. Here we have cloned and characterized the orthologous human BERP cDNA and gene (HGMW-approved symbol RNF22). The human BERP protein is encoded by 11 exons ranging in size from 71 to 733 bp, and fluorescence in situ hybridization shows that the BERP gene maps to chromosome 11p15.5, 3′ to the FE65 gene. The human BERP protein is 98% identical to the rat and mouse proteins, and we have identified a highly conserved potential orthologue in Caenorhabditis elegans. BERP belongs to the RING finger–B-box–coiled coil (RBCC) subgroup of RING finger proteins, and a cluster of these RBCC protein genes is present in chromosome 11p15. Chromosome region 11p15 is thought to harbor tumor suppressor genes, and deletions of this region occur frequently in several types of human cancers. These observations indicate that BERP may be a novel tumor suppressor gene.  相似文献   

15.

Background  

The evolution of genomic imprinting, the parental-origin specific expression of genes, is the subject of much debate. There are several theories to account for how the mechanism evolved including the hypothesis that it was driven by the evolution of X-inactivation, or that it arose from an ancestrally imprinted chromosome.  相似文献   

16.

Background  

Several imprinted genes have been implicated in the process of placentation. The distal region of mouse chromosome 7 (Chr 7) contains at least ten imprinted genes, several of which are expressed from the maternal homologue in the placenta. The corresponding paternal alleles of these genes are silenced in cis by an incompletely understood mechanism involving the formation of a repressive nuclear compartment mediated by the long non-coding RNA Kcnq1ot1 initiated from imprinting centre 2 (IC2). However, it is unknown whether some maternally expressed genes are silenced on the paternal homologue via a Kcnq1ot1-independent mechanism. We have previously reported that maternal inheritance of a large truncation of Chr7 encompassing the entire IC2-regulated domain (DelTel7 allele) leads to embryonic lethality at mid-gestation accompanied by severe placental abnormalities. Kcnq1ot1 expression can be abolished on the paternal chromosome by deleting IC2 (IC2KO allele). When the IC2KO mutation is paternally inherited, epigenetic silencing is lost in the region and the DelTel7 lethality is rescued in compound heterozygotes, leading to viable DelTel7/IC2KO mice.  相似文献   

17.
Genomic imprinting is an epigenetic modification of the gamete or zygote leading to parental origin-specific differential expression of the two alleles of a gene in somatic cells of the offspring. We previously reported that the human KVLQT1 gene is imprinted and disrupted in patients with germline balanced chromosomal rearrangements and Beckwith–Wiedemann syndrome. In human, the gene is imprinted in most fetal tissues except the heart, and KVLQT1 is part of a 1-Mb cluster of imprinted genes on human chromosome 11p15.5. We sought to determine whether the mouse Kvlqt1 gene is imprinted, by performing interspecific crosses of 129/SvEv mice with CAST/Ei(Mus musculus castaneus). We identified a transcribed polymorphism that distinguishes the two parental alleles in F1offspring. Examination of embryonic, neonatal, and postnatal tissues revealed that Kvlqt1 is imprinted in mouse early embryos, in both female 129 × male CS and female CS × male 129 offspring, with preferential expression of the maternal allele, like the human homologue. Surprisingly, imprinting was developmentally relaxed, and the developmental stage and tissue specificity of relaxation of imprinting was strain-dependent. To our knowledge, this is the first example of an endogenous gene that shows strain-dependent developmental relaxation of imprinting.  相似文献   

18.
We have isolated a new marker (cos11-5TH) that detects an MspI restriction fragment length polymorphism in the 5 region of the human tyrosine hydroxylase gene (TH) on chromosome band 11p15.5. This region of human chromosome 11 contains several important loci for disease phenotypes including Beckwith-Wiedemann syndrome (BWS), Wilms' tumor, and embryonal rhabdomyosarcoma. Thus, identification of new polymorphic markers in this region are important for future gene mapping and linkage analyses. To better define the region of 11p15.5 deleted in embryonal rhabdomyosarcoma, this new marker was used to investigate allelic losses in embryonal rhabdomyosarcoma tumors.  相似文献   

19.
Beckwith–Wiedemann syndrome (BWS) is an overgrowth disorder resulting from dysregulation of multiple imprinted genes through a variety of distinct mechanisms. A frequent alteration in BWS involves changes in the imprinting status of the coordinately regulated IGF2 and H19 genes on 11p15. Patients have been categorized according to alterations in the imprinted expression, allele-specific methylation, and regional replication timing of these genes. In this work, IGF2/H19 expression, H19 DNA methylation, and IGF2 regional replication timing were studied in nine karyotypically normal BWS fibroblasts and two BWS patients with maternally inherited 11p15 chromosomal rearrangements. Informative patients (9/9) maintained normal monoallelic H19 expression/methylation, despite biallelic IGF2 expression in 6/9. Replication timing studies revealed no changes in the pattern of asynchronous replication timing for both a patient with biallelic IGF2 expression and a patient carrying an 11p15 inversion. In contrast, a patient with a chromosome 11;22 translocation and normal H19 expression/methylation exhibited partial loss of asynchrony and a shift toward earlier replication times. These results indicate that in BWS, (1) H19 imprinting alterations are less frequent than previously estimated, (2) IGF2 imprinting and H19 imprinting are not necessarily coordinated, and (3) alterations in regional replication timing are generally not correlated with either chromosomal rearrangements or the imprinting status of IGF2 and H19.  相似文献   

20.
To develop an systematic in vitro approach for the study of genomic imprinting, we generated a new library of human/mouse A9 monochromosomal hybrids. We used whole cell fusion and microcell-mediated chromosome transfer to generate A9 hybrids containing a single, intact, bsr-tagged human chromosome derived from primary fibroblasts. A9 hybrids were identified that contained either human chromosome 1, 2, 4, 5, 7, 8, 10, 11, 15, 18, 20, or X. The parental origin of these chromosomes was determined by polymorphic analysis using microsatellite markers, and matched hybrids containing maternal and paternal chromosomes were identified for chromosomes 5, 10, 11 and 15. The imprinted gene KVLQT1 on human chromosome 11p15.5 was expressed exclusively from the maternal chromosome in A9 hybrids, and the parental-origin-specific expression patterns of several other imprinted genes were also maintained. This library of human monochromosomal hybrids is a valuable resource for the mapping and cloning of human genes and is a novel in vitro system for the screening of imprinted genes and for their functional analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号