共查询到20条相似文献,搜索用时 0 毫秒
1.
In Bacillus licheniformis, alpha-amylase production varied more than 100-fold depending on the presence or absence of a catabolite-repressing carbon source in the growth medium. alpha-Amylase was produced during the growth phase and not at the onset of the stationary phase. Induction of alpha-amylase correlated with synthesis of mRNA initiating at the promoter of the alpha-amylase gene. 相似文献
2.
De Cordt S Vanhoof K Hu J Maesmans G Hendrickx M Tobback P 《Biotechnology and bioengineering》1992,40(3):396-402
In view of a possible application of the alpha-amylase from Bacillus licheniformis as a time-temperature integrator for evaluation of heat processes,(11) thermal inactivation kinetics of the dissolved and covalently immobilized enzyme were studied in the temperature range 90-108 degrees C. The D-values (95 degrees C) for inactivation of alpha-amylase, dissolved in tris-HCl buffer, ranged from 6 to 157 min, depending on pH, ionic strength, and Ca(2+) and enzyme concentration. The z-value fluctuated between 6.2 and 7.6 degrees C. On immobilization of the alpha-amylase by covalent coupling with glutaraldehyde to porous glass beads, the thermoinactivation kinetics became biphasic under certain circumstances. For immobilized enzyme, the D-values (95 degrees C) ranged between 17 and 620 min, depending largely on certain environmental conditions. The z-value fluctuated between 8.1 and 12.9 degrees C. In each case of biphasic inactivation, the z-value of the stable fraction (with the higher D-values) was lower than the z-value of the labile fraction. (c) 1992 John Wiley & Sons, Inc. 相似文献
3.
Ca-induced renaturation of Bacillus licheniformis alpha-amylase in the presence of urea has been employed to determine the binding constants of the ion. The native enzyme is folded at 3M urea while the Ca-depleted protein is largely unfolded at this denaturant concentration. Refolding of the protein has been monitored by circular dichroism and the titration curves have been analyzed assuming a model of three independent binding sites. The stoichiometry has been taken from X-ray studies. The refolded protein exhibits a secondary structure that is similar but not identical to that of the native protein. The binding constants have been used to construct a phase diagram that illustrates the contribution of Ca-binding to the resistance against urea unfolding. 相似文献
4.
Declerck N Machius M Wiegand G Huber R Gaillardin C 《Journal of molecular biology》2000,301(4):1041-1057
Bacillus licheniformis alpha-amylase (BLA) is a starch-degrading enzyme that is highly thermostable although it is produced by a rather mesophilic organism. Over the last decade, the origin of BLA thermal properties has been extensively investigated in both academic and industrial laboratories, yet it is poorly understood. Here, we have used structure-based mutagenesis in order to probe the role of amino acid residues previously proposed as being important for BLA thermostability. Residues involved in salt-bridges, calcium binding or potential deamidation processes have been selected and replaced with various amino acids using a site-directed mutagenesis method, based on informational suppression. A total of 175 amylase variants were created and analysed in vitro. Active amylase variants were tested for thermostability by measuring residual activities after incubation at high temperature. Out of the 15 target residues, seven (Asp121, Asn126, Asp164, Asn192, Asp200, Asp204 and Ala269) were found to be particularly intolerant to any amino acid substitutions, some of which lead to very unstable mutant enzymes. By contrast, three asparagine residues (Asn172, Asn188 and Asn190) could be replaced with amino acid residues that significantly increase the thermostability compared to the wild-type enzyme. The highest stabilization event resulted from the substitution of phenylalanine in place of asparagine at position 190, leading to a sixfold increase of the enzyme's half-life at 80 degrees C (pH 5.6, 0.1 mM CaCl(2)).These results, combined with those of previous mutational analyses, show that the structural determinants contributing to the overall thermostability of BLA concentrate in domain B and at its interface with the central A domain. This region contains a triadic Ca-Na-Ca metal-binding site that appears extremely sensitive to any modification that may alter or reinforce the network of electrostatic interactions entrapping the metal ions. In particular, a loop spanning from residue 178 to 199, which undergoes pronounced conformational changes upon removal of calcium, appears to be the key feature for maintaining the enzyme structural integrity. Outside this region, most salt-bridges that were destroyed by mutations were found to be dispensable, except for an Asp121-Arg127 salt-bridge that contributes to the enhanced thermostability of BLA compared to other homologous bacterial alpha-amylases. Finally, our studies demonstrate that the natural resistance of BLA against high temperature is not optimized and can be enhanced further through various means, including the removal of possibly deamidating residues. 相似文献
5.
Modification of alpha-amylase from Bacillus licheniformis by the polyaldehyde derived from beta-cyclodextrine and alpha-amylase thermostability 总被引:1,自引:0,他引:1
The cleavage of beta-cyclodextrine by sodium periodate at the seven 2-3 diols of the glucose unit gives rise to the polyaldehyde 1, used to modify alpha-amylase. The reductive modification of alpha-amylase from Bacillus licheniformis reduced the number of reactive lysine groups from 8 to 3.5 per mol of enzyme with an activity loss of 25% and increased the half-life at 80 degrees C from 4.7 to 7.0 minutes. 相似文献
6.
To elucidate how temperature effects subsite mapping of a thermostable alpha-amylase from Bacillus licheniformis (BLA), a comparative study was performed by using 2-chloro-4-nitrophenyl (CNP) beta-maltooligosides with degree of polymerisation (DP) 4-10 as model substrates. Action patterns, cleavage frequencies and subsite binding energies were determined at 50 degrees C, 80 degrees C and 100 degrees C. Subsite map at 80 degrees C indicates more favourable bindings compared to the hydrolysis at 50 degrees C. Hydrolysis at 100 degrees C resulted in a clear shift in the product pattern and suggests significant differences in the active site architecture. Two preferred cleavage modes were seen for all substrates in which subsite (+2) and (+3) were dominant, but CNP-G1 was never formed. In the preferred binding mode of shorter oligomers, CNP-G2 serves as the leaving group (79%, 50%, 59% and 62% from CNP-G4, CNP-G5, CNP-G6 and CNP-G7, respectively), while CNP-G3 is the dominant hydrolysis product from CNP-G8, CNP-G9, and CNP-Gl0 (62%, 68% and 64%, respectively). The high binding energy value (-17.5 kJ/mol) found at subsite (+2) is consistent with the significant formation of CNP-G2. Subsite mapping at 80 degrees C and 100 degrees C confirms that there are no further binding sites despite the presence of longer products. 相似文献
7.
Crystallization and a preliminary X-ray crystallographic study of alpha-amylase from Bacillus licheniformis 总被引:1,自引:0,他引:1
alpha-Amylase from Bacillus licheniformis has been crystallized by the hanging-drop vapor diffusion method in the presence of calcium ions using ammonium sulfate as precipitant. The crystals are tetragonal, belonging to the space group P4(1)2(1)2 (or P4(3)2(1)2), with unit cell dimensions of a = 119.9 and c = 85.4 A. The asymmetric unit contains one molecule of alpha-amylase, with a crystal volume per protein mass (VM) of 2.78 A3/Da. The crystals diffract to better than 2.0 A Bragg spacing when exposed to synchrotron X-rays and they are reasonably stable in the X-ray beam. Thus the crystals are suitable for structure determination at high resolution by X-ray methods. 相似文献
8.
Bravo Rodríguez V Jurado Alameda E Martínez Gallegos JF Reyes Requena A García López AI 《Biotechnology progress》2006,22(3):718-722
The enzymatic hydrolysis of soluble starch with an alpha-amylase from Bacillus licheniformis (commercial enzyme Termamyl 300 L Type DX) have been experimentally studied at pH 7.5, within the temperature range of 37-75 degrees C, at initial substrate concentrations of between 0.25 and 2.00 g/L, and enzyme concentrations of between 0.575 x 10(-4) and 13.8 x 10(-4) g/L. To follow the reaction a procedure based on the iodometric method for measuring alpha-amylase activity was used. The kinetics of the enzymatic hydrolysis was fitted to the Michaelis-Menten equation using the integral method, taking into account that the thermal deactivation of the enzyme follows a second-order kinetic. These parameters were fitted to the Arrhenius equation obtaining activation energies of 24.4 and 41.7 kJ/mol and preexponential factors of 734.9 g/L and 1.74 x 10(8) min(-1) for K(M) and k, respectively. 相似文献
9.
The effects of oilseed cakes on extracellular thermostable alpha-amylase production by Bacillus licheniformis CUMC305 was investigated. Each oilseed cake was made of groundnut, mustard, sesame, linseed, coconut copra, madhuca, or cotton. alpha-Amylase production was considerably improved in all instances and varied with the oilseed cake concentration in basal medium containing peptone and beef extract. Maximum increases were effected by a low concentration (0.5 to 1.0%) of groundnut or coconut, a high concentration (3%) of linseed or mustard, and an Rintermediate concentration (2%) of cotton, madhuca, or sesame. The oilseed cakes made of groundnut or mustard could completely replace the conventional peptone-beef extract medium as the fermentation base for the production of alpha-amylase by B. licheniformis. The addition of corn steep liquor to cotton, linseed, sesame, or madhuca cake in the medium improved alpha-amylase production. 相似文献
10.
In the present work, indigenously prepared rigid superporous (pore size of approximately 3 microm) cross-linked cellulose matrix (CELBEADS) has been used as a support for the immobilization of Bacillus licheniformis alpha-amylase (BLA). Optimum pH and temperature, and Michaelis-Menten constants were determined for both free and immobilized BLA. Immobilized BLA was observed to produce a different saccharide profile than free BLA at any value of dextrose equivalent. It was observed that pH, temperature, and initial starch concentration has a significant effect on the saccharide profile of starch hydrolysate produced using immobilized BLA in the batch mode, whereas the ratio of concentration of enzyme units to initial starch concentration has no influence on the same. Hence immobilized BLA can be used as an additional tool for production of maltodextrins with different saccharide profiles. Immobilized BLA has better thermostability than free BLA. Immobilized BLA was found to retain full activity even after eight batches of hydrolysis, each of 8h duration at 55 degrees C and 90 mg/mL initial starch concentration. A semiempirical model has been used for the prediction of saccharide composition of starch hydrolysate with respect to time. 相似文献
11.
N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes. 总被引:2,自引:3,他引:2
下载免费PDF全文

The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis. 相似文献
12.
Ghalanbor Z Ghaemi N Marashi SA Amanlou M Habibi-Rezaei M Khajeh K Ranjbar B 《Protein and peptide letters》2008,15(2):212-214
Bacillus licheniformis alpha-amylase (BLA) is routinely used as a model thermostable amylase in biochemical studies. Its starch hydrolysis activity has recently been studied in Tris buffer. Here, we address the question that whether the application of Tris buffer may influence the results of BLA activity analyses. Based on the inhibition studies and docking simulations, we suggest that Tris molecule is a competitive inhibitor of starch-hydrolyzing activity of BLA, and it has a high tendency to bind the enzyme active site. Hence, it is critically important to consider such effect when interpreting the results of activity studies of this enzyme in Tris buffer. 相似文献
13.
The effects of oilseed cakes on extracellular thermostable alpha-amylase production by Bacillus licheniformis CUMC305 was investigated. Each oilseed cake was made of groundnut, mustard, sesame, linseed, coconut copra, madhuca, or cotton. alpha-Amylase production was considerably improved in all instances and varied with the oilseed cake concentration in basal medium containing peptone and beef extract. Maximum increases were effected by a low concentration (0.5 to 1.0%) of groundnut or coconut, a high concentration (3%) of linseed or mustard, and an Rintermediate concentration (2%) of cotton, madhuca, or sesame. The oilseed cakes made of groundnut or mustard could completely replace the conventional peptone-beef extract medium as the fermentation base for the production of alpha-amylase by B. licheniformis. The addition of corn steep liquor to cotton, linseed, sesame, or madhuca cake in the medium improved alpha-amylase production. 相似文献
14.
Machius M Declerck N Huber R Wiegand G 《The Journal of biological chemistry》2003,278(13):11546-11553
It is generally assumed that in proteins hydrophobic residues are not favorable at solvent-exposed sites, and that amino acid substitutions on the surface have little effect on protein thermostability. Contrary to these assumptions, we have identified hyperthermostable variants of Bacillus licheniformis alpha-amylase (BLA) that result from the incorporation of hydrophobic residues at the surface. Under highly destabilizing conditions, a variant combining five stabilizing mutations unfolds 32 times more slowly and at a temperature 13 degrees C higher than the wild-type. Crystal structure analysis at 1.7 A resolution suggests that stabilization is achieved through (a) extension of the concept of increased hydrophobic packing, usually applied to cavities, to surface indentations, (b) introduction of favorable aromatic-aromatic interactions on the surface, (c) specific stabilization of intrinsic metal binding sites, and (d) stabilization of a beta-sheet by introducing a residue with high beta-sheet forming propensity. All mutated residues are involved in forming complex, cooperative interaction networks that extend from the interior of the protein to its surface and which may therefore constitute "weak points" where BLA unfolding is initiated. This might explain the unexpectedly large effect induced by some of the substitutions on the kinetic stability of BLA. Our study shows that substantial protein stabilization can be achieved by stabilizing surface positions that participate in underlying cooperatively formed substructures. At such positions, even the apparently thermodynamically unfavorable introduction of hydrophobic residues should be explored. 相似文献
15.
Bacillus licheniformis alpha-amylase (BLA) is a highly thermostable starch-degrading enzyme that has been extensively studied in both academic and industrial laboratories. For over a decade, we have investigated BLA thermal properties and identified amino acid substitutions that significantly increase or decrease the thermostability. This paper describes the cumulative effect of some of the most beneficial point mutations identified in BLA. Remarkably, the Q264S-N265Y double mutation led to a rather limited gain in stability but significantly improved the amylolytic function. The most hyperthermostable variants combined seven amino acid substitutions and inactivated over 100 times more slowly and at temperatures up to 23 degrees C higher than the wild-type enzyme. In addition, two highly destabilizing mutations were introduced in the metal binding site and resulted in a decrease of 25 degrees C in the half-inactivation temperature of the double mutant enzyme compared with wild-type. These mutational effects were analysed by protein modelling based on the recently determined crystal structure of a hyperthermostable BLA variant. Our engineering work on BLA shows that the thermostability of an already naturally highly thermostable enzyme can be substantially improved and modulated over a temperature range of 50 degrees C through a few point mutations. 相似文献
16.
Bacillus licheniformis alpha-amylase (BLA) is an industrially important extracellular enzyme with a number of applications. In the present work, an investigation was carried out on the tryptolytic digestion of BLA which produced two fragments, TF18K and TF38K, and no further fragments could be seen after 6h incubation of BLA with trypsin. The fragments were isolated by preparative gel electrophoresis and reverse phase HPLC. The N-terminal sequencing of fragments showed that trypsin attacks on Arg(127)-Val(128) peptide bond in BLA. Intrinsic and acrylamide quenching fluorescence experiments and Far-UV circular dichroism studies showed that substantial changes in the secondary and tertiary structures of the TF18K and TF38K have occurred. Subsequently, polyclonal antibody was raised against TF18K. After purification of the antibody by protein A Sepharose, thermal stability of BLA in the presence of this antibody was determined. Results showed that the presence of antiTF18K leads to significant stabilization of BLA. For example, after 30 min incubation at 90 degrees C, residual activity of the enzyme in the presence of antibody (40 microg/ml) was determined as 40% while the enzyme showed no activity in the absence of antibody after incubating in the same condition. In addition, it has been proved that calcium enhances the thermal stability of BLA and a synergistic stabilization of BLA has been seen with antiTF18K and calcium, simultaneously. 相似文献
17.
Habibi AE Khajeh K Nemat-Gorgani M 《Journal of biochemistry and molecular biology》2004,37(6):642-647
The lysine residues of Bacillus licheniformis alpha-amylase (BLA) were chemically modified using citraconic anhydride or succinic anhydride. Modification caused fundamental changes in the enzymes specificity, as indicated by a dramatic increase in maltosidase and a reduction in amylase activity. These changes in substrate specificity were found to coincide with a change in the cleavage pattern of the substrates and with a conversion of the native endo- form of the enzyme to a modified exo- form. Progressive increases in the productions of rho-nitrophenol or glucose, when para nitrophenyl-maltoheptaoside or soluble starch, respectively, was used as substrate, were observed upon modification. The described changes were affected by the size of incorporated modified reagent: citraconic anhydride was more effective than succinic anhydride. Reasons for the observed changes are discussed and reasons for the effectivenesses of chemical modifications for tailoring enzyme specificities are suggested. 相似文献
18.
A Baker-Perkins corotating twin screw extruder was used as a bioreactor to hydrolyze pregelantinized corn starch by themophilic Bacillus licheniformis alpha-amylase. The extruder was modeled as a tube, and characterized as a closed system. This characterization is not in the thermodynamic sense; rather, it relates to the profile of a tracer fluid upon entry to and exit from the reaction zone. The reaction kinetics were modeled by a modified first-order equation, which allowed the dispersion equation to be solved analytically with the Danckwerts boundary condition. Data from several extrusion runs were super-imposed to obtain a profile to evaluate the model. The dispersion number, determined from the first and second moments of the RTD curve, was primarily a function of the length of the reaction zone. There was good agreement between predictions and experimental data, especially at low dispersion numbers. In general, the axial dispersion model appears to be suitable for analysis of enzymatic reactions of up to 30% conversion. At a fixed flow rate and constant temperature, the extent of starch conversion depends significantly on moisture content, residence time and enzyme dosage, but not on screw speed. 相似文献
19.
Jung-Mi Park Myoung-Uoon Jang Jung-Hyun Kang Min-Jeong Kim So-Won Lee Yeong Bok Song Chul-Soo Shin Nam Soo Han Tae-Jip Kim 《Journal of microbiology (Seoul, Korea)》2012,50(6):1041-1046
An endo-arabinanase (BLABNase) gene from Bacillus licheniformis DSM13 was cloned and expressed in Escherichia coli, and the biochemical properties of its encoded enzyme were characterized. The BLABNase gene consists of a single open reading frame of 987 nucleotides that encodes 328 amino acids with a predicted molecular mass of about 36 kDa. BLABNase exhibited the highest activity against debranched α-(1,5)-arabinan in 50 mM sodium acetate buffer (pH 6.0) at 55°C. Enzymatic characterization revealed that BLABNase hydrolyzes debranched or linear arabinans with a much higher activity than branched arabinan from sugar beet. Enzymatic hydrolysis pattern analyses demonstrated BLABNase to be a typical endo-(1,5)-α-s-arabinanase (EC 3.2.1.99) that randomly cleaves the internal α-(1,5)-linked L-arabinofuranosyl residues of a branchless arabinan backbone to release arabinotriose mainly, although a small amount of arabino-oligosaccharide intermediates is also liberated. Our results indicated that BLABNase acts preferentially along with the oligosaccharides longer than arabinopentaose, thus enabling the enzymatic production of various arabino-oligosaccharides. 相似文献
20.