首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Based on genetic manipulation of T7 late messenger RNA levels in vivo, we previously hypothesized that wild-type T7 infection of Escherichia coli develops in mRNA excess and that there is translational discrimination against T7 gene 0·3 mRNA (Strome & Young, 1978). The results presented here support our hypothesis. The discrimination against 0·3 mRNA translation observed in vivo can be mimicked in a cell-free system by increasing the concentration of T7 RNA beyond the level needed to saturate the translational machinery or by translating T7 RNA with a low concentration of ribosomes. This discrimination can be overcome by adding ribosomes to the cell-free system (increasing the ribosome to mRNA ratio) or by slowing the rate of polypeptide chain elongation. In addition 0·3 mRNA activity as well as a substantial fraction of T7 late mRNA activity is found to be shifted off of polysomes late in T7 infection. Our results are indicative of a low initiation rate constant for 0·3 mRNA compared to T7 late mRNAs.  相似文献   

3.
4.
Infection of ultraviolet light-irradiated Escherichia coli with T7 phage in the presence of chloramphenicol results in synthesis of T7 early messenger RNA but not late mRNA. T7 early mRNA accumulates in terms of acid-insoluble, T7 DNA-hybridizable RNA. However, messenger activity of the same RNA decays rapidly with a half-life of about 6.5 minutes at 30 °C when tested for the ability to direct in vitro protein synthesis. This functional decay of T7 early mRNA is attributable to a loss of structural integrity of the RNA. Polyacrylamide-agarose gel electrophoresis shows that T7 early mRNAs are cleaved, generating smaller-size RNAs. Kinetics of the appearance of T7-specific RNA polymerase, one of the early gene products, during normal T7 infection show that the capacity of the cells to produce the enzyme decays very rapidly when early mRNA synthesis is terminated either by rifampicin or by a natural mechanism programmed by T7. Preferential synthesis of late proteins in the presence of chemically stable early mRNA late in T7 infection may be explained by the observed functional decay of early mRNA.  相似文献   

5.
Mutants of bacteriophage T4 which exhibit increased sensitivity to ultraviolet radiation specifically at high temperature were isolated after mutagenesis with hydroxylamine. At 42 °C the mutants are twice as sensitive to ultraviolet light as T4D, whereas at 30 °C they exhibit survival curves almost identical to that of the wild-type strain. Complementation tests revealed that the mutants possess temperature-sensitive mutations in the v gene.Evidence is presented to show that T4 endonuclease V produced by the mutants is more thermolabile than the enzyme of the wild-type. (1) Extracts of cells infected with the mutants were capable of excising pyrimidine dimers from ultraviolet irradiated T4 DNA at 30 °C, but no selective release of dimers was induced at 42 °C. (2) Endonuclease V produced by the mutant was inactivated more rapidly than was the enzyme from T4D-infected cells when the purified enzymes were incubated in a buffer at 42 °C. From these results it is evident that the v gene is the structural gene for T4 endonuclease V, which plays an essential role in the excision-repair of ultraviolet light-damaged DNA.The time of action of the repair endonuclease was determined by using the mutant. Survival of a temperature-sensitive v mutant, exposed to ultraviolet light, increased when infected cells were incubated at 30 °C for at least ten minutes and then transferred to 42 °C. It appears that repair of DNA proceeds during an early stage of phage development.  相似文献   

6.
T antigen in extracts of cells infected with tsA mutants is 2 to 6 times more labile at 32°C or 41°C than the antigen in extracts of cells infected with wild-type SV40, as assayed by complement fixation. The stabilities of wild-type and mutant antigens are not altered by mixing the extracts, and thus the stability is an intrinsic property of each antigen and is not determined by another component of the extract. This observation indicates that T antigen is probably the virus-coded product of the A gene. In cells infected at the permissive temperature of 32°C with a high multiplicity of either wild-type or tsA mutant virus, the amounts of T antigen are approximately equivalent and increase logarithmically during the entire period of infection, up to 96 hr. Cells infected at 32°C for 96 hr with mixtures of wild-type and tsA virus produce T antigen with the stability of wild-type, even when the infection is carried out with up to a 5 fold excess of the mutant. The more stable wild-type antigen may repress, directly or indirectly, the synthesis of the more labile mutant antigen.  相似文献   

7.
8.
9.
Temperature sensitive (ts) SV40 transformed mouse fibroblasts (tsSV3T3) express their transformed phenotype in vitro when growing at 32° C but not when growing at 39° C1. Viral mRNA is, however, apparently transcribed at 39° C, for SV40 specific T-antigen can be demonstrated and viral mRNA can be found by nucleic acid hybridization: Fusion-rescue experiments show that the transforming virus is wild type but tsSV3T3 cells cannot be re-transformed at 39° C with high multiplicity SV40. This suggests that the temperature sensitive behaviour stems from a cellular rather than a viral mutation. The question then arises of the stringency with which these ts transformants control the expression of viral transformation functions at 39° C.  相似文献   

10.
11.
The rate of translation in bacteriophage T4-infected Escherichia coli has been studied. It was observed that at about ten minutes after infection at 37 °C the rate of protein synthesis declines to 40 to 50% of the rate observed during the first ten minutes, yet all cells remain intact for at least 60 minutes. This drop in the rate of general protein synthesis is correlated with a change in the ability of initiation factor-free ribosomes to translate both global T4 messenger RNAs and a specific T4 messenger, deoxynucleotide kinase (EC 2.7.4.4) mRNA. The alteration in ribosome function begins between five and ten minutes after infection and minimum ribosome activity is reached at approximately 20 minutes after infection. A late T4 gene is involved, as shown by the fact that the alteration in ribosome function is not observed in amB1292-infected cells (i.e. cells which synthesize early but not late T4 mRNAs).  相似文献   

12.
13.
14.
The susceptibility of targets to destruction by tumoricidal rat and mouse macrophages was studied with virus-transformed cell lines in which various elements of the transformed phenotype are only expressed at specific temperatures. BHK cells transformed by the ts3 mutant of polyoma virus, rat embryo 3Y1 cells transformed by a temperature-sensitive A cistron mutant of simian virus 40 (SV40) and the ts-H6-15 temperature-sensitive line of SV40-transformed mouse 3T3 cells were killed in vitro by macrophages at both the permissive (33 °C) or nonpermissive (39 °C) temperatures for expression of the transformed phenotype. 3T3, 3Y1 and BHK cells transformed by wild-type SV40 or polyoma virus were also destroyed by tumoricidal macrophages at both 33 and 39 °C, but untransformed 3T3, 3Y1, and BHK cells were not. Thus, transformed cells are killed by macrophages regardless of whether or not they express cell surface LETS protein or Forssman antigen, display surface changes which permit agglutination by low doses of plant lectins, express SV40 T antigen, have a low saturation density, or exhibit density-dependent inhibition of DNA synthesis.  相似文献   

15.
Human ITPase, encoded by the ITPA gene, and its orthologs (RdgB in Escherichia coli and HAM1 in Saccharomyces cerevisiae) exclude noncanonical nucleoside triphosphates (NTPs) from NTP pools. Deoxyinosine triphosphate (dITP) and 2′-deoxy-N-6-hydroxylaminopurine triphosphate are both hydrolyzed by ITPase to yield the corresponding deoxynucleoside monophosphate and pyrophosphate. In addition, metabolites of thiopurine drugs such as azathioprine have been shown to be substrates for ITPase. The ITPA 94C>A [P32T] variant is one of two polymorphisms associated with decreased ITPase activity. Furthermore, the ITPA 94C>A [P32T] variant is associated with an increased risk of adverse drug reactions for patients treated with azathioprine. The nature of the observed phenotypes for ITPA 94C>A [P32T] variant individuals is currently unclear. Our biochemical assays indicate the P32T ITPase has 55% activity with dITP compared to wild-type ITPase. Complementation experiments at 37 °C show that N-6-hydroxylaminopurine sensitivity of E. coli rdgB mutants is reduced with a plasmid bearing the ITPA 94C>A [P32T] gene approximately 50% less than with a plasmid bearing the wild-type ITPA gene. The reduction in sensitivity is less at 42 °C. Experiments with synthetic lethal E. coli recA(ts) rdgB mutants show that the ITPA 94C>A [P32T] gene also complements the recA(ts) rdgB growth deficiency at 42 °C approximately 40% lower than wild-type ITPA gene. Western blot analysis indicates that the expression level of P32T ITPase is reduced in these cells relative to wild type. Our data support the idea that P32T ITPase is a functional protein, albeit with a reduced rate of noncanonical NTP pyrophosphohydrolase activity and reduced protein stability.  相似文献   

16.
We have analysed an Escherichia coli temperature-sensitive mutant with altered messenger RNA stability, and it was found that: (1) the unstable fraction of pulse-labelled RNAs decayed with a half-life at 42 °C of about two minutes in the parent strain PA3092; the half-life was 11 to 12 minutes in the mutant HAK75. Puromycin enhanced the decay rate about twofold in both PA3092 and HAK75; the addition of chloramphenicol inhibited the degradation significantly in both strains. The rate of ribosomal RNA accumulation in the mutant cells at 42 °C did not differ from that in the wild-type cells. (2) Sedimentation analysis by sodium dodecyl sulphate/sucrose density-gradient centrifugation of bulk mRNA as well as tryptophan mRNA of the wild-type strain showed the expected rapid reduction in the size and level of those mRNA molecules at three minutes and five minutes respectively, after addition of rifampicin at 42 °C. In contrast, the cells of HAK75 retained almost full-length trp mRNA and bulk mRNA at 5 to 12 minutes after the addition of rifampicin at 42 °C, even though the total level of radioactivity in the mRNA fraction had decreased to about 60 to 75% of the initial activity. (3) Even though mRNA molecules were chemically protected at the non-permissive temperature in the mutant, the functional decay of both β-galactosidase and tryptophan synthetase occurred at a rate comparable to that in the parental strain. (4) We isolated temperature-resistant revertants from the mutant at a frequency of 5 × 10?8, and these revertants (TR1 and TR2) had the normal decay rate of unstable RNA.  相似文献   

17.
The effects of incubation of yeast spheroplasts at elevated temperature (40°C) on a number of activities involved in protein biosynthesis have been examined in preparations obtained from wild-type cells (wt A364A) and a temperature-sensitive mutant (ts 7–45) derived from it. With wild-type cells, preincubation of spheroplasts at the elevated temperature had little or no effect on the following: (1) the ribosomal subunit-polysome pattern; (2) the translation of exogenous natural mRNA in postpolysomal extracts devoid of endogenous mRNA; (3) the translation of poly(U) in postpolysomal extracts; (4) the incorporation of methionine into 40 S preinitiation and 80 S initiation complexes; (5) the synthesis of Met-tRNA in postribosomal (cytosol) extracts; and (6) the formation of eIF-2·GTP·Met-tRNAf ternary complex in the cytosol. With temperature-sensitive spheroplasts that had not been preincubated at the elevated temperature, the concentration of free, native 40 S subunits appeared to be lower and that of 60 S subunits higher than in wild-type cells; translation of exogenous natural mRNA in postpolysomal extracts was somewhat lower than in wild-type preparations, but all of the other reactions and components measured were comparable to those in wild-type preparations. Preincubation of temperature-sensitive spheroplasts at 40°C resulted in: (1) a further decrease in the level of 40 S subunits; (2) disaggregation of polysomes; (3) loss of ability to translate natural mRNA but not poly(U); (4) decreased ability to form 40 S preinitiation intermediates; and (5) production of an activity, found in the cytosol, that inhibited Met-tRNA synthetase reversibly. The inhibitor had the characteristics of a protein and did not appear to be a proteinase, nuclease, or nucleotidase.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号