首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Aquatic Botany》1987,29(2):123-138
Results of the first published study on root decomposition in a West European salt marsh are presented. In situ decomposition of roots of Spartinetum, Puccinellietum and Halimionetum communities were investigated using litter bags. Both the temporal pattern of decomposition and decomposition rate of belowground tissues of the three communities differed during 30 weeks in the marsh; Puccinellietum root litter lost 30–45% ash-free dry weight, Halimionetum root litter 17–26% and Spartinetum root litter 7–17%. Compared to aboveground decomposition in salt marshes these rates are low, however they are in the range of results reported for American and Australian salt marshes. Decomposition rates of root material buried at depths of 10 and 20 cm differed and there was a community × depth interaction. Initial content of structural components was highest in Halimionetum root litter and lowest in Puccinellietum root litter. Integrated soil temperature was highest in the Puccinellietum habitat, while flooding frequency was lowest in the Halimionetum habitat. Results indicate that environmental conditions can cause irregular fluctuations in belowground decomposition rates.  相似文献   

2.
Recent studies showed that photochemical breakdown (photodegradation) of plant material accounts for a substantial portion of litter decomposition and subsequent trace gas release in ecosystems under high radiative load and low precipitation. In the absence of solar radiation, thermal degradation may also cause trace gas release at temperatures below the ignition point. These observations suggest that the abiotic processes of photodegradation and thermal degradation of plant litter may be important in understanding global trace gas budgets. In a laboratory incubation study, we performed a simultaneous carbon (C) accounting of CO2, CO, and CH4 produced as a byproduct of photodegradation and thermal degradation of six different plant litter types that varied in chemical composition. The patterns of trace gas release during photodegradation and thermal degradation differed considerably across the six plant materials, suggesting that chemical composition of litter may influence the rates of abiotic degradation. There was a strong positive correlation between the rates of trace gas release during photodegradation and temperature. A significant portion of trace gases were produced during low temperature (< 100 °C) thermal degradation of litter in the absence of solar radiation, which was also positively correlated to temperature. In addition, both thermal degradation and photodegradation occurred in the absence of O2. This indicates that the mechanism formerly accepted as photo‐oxidation may only be one of several photodegradation processes. We speculate that the direct breakdown of chemical groups such as carboxyl, carbonyl, and methoxyl groups may result in CO2, CO, and CH4 release. We suggest that the combined processes of thermal and photodegradation of litter may be a previously under accounted source of C‐based trace gases from terrestrial systems.  相似文献   

3.
王文君  杨万勤  谭波  刘瑞龙  吴福忠 《生态学报》2013,33(18):5737-5750
为了解植物生长不同物候时期凋落物分解过程中土壤动物群落结构动态及其与凋落物分解的关系,以四川盆地亚热带常绿阔叶林典型人工林树种马尾松和柳杉,次生林树种香樟和麻栎凋落物为研究对象,采用凋落物分解袋试验研究,凋落物分解过程中土壤动物的群落特征。4种凋落物分解袋共获得土壤动物8047只,其中,柳杉(2341只)>香樟(2105只)>马尾松(2046只)>麻栎(1555只)。其中,秋末落叶期、萌动期和展叶期,马尾松凋落物袋中主要以捕食性土壤动物为优势类群,而后以菌食性土壤动物为主;香樟凋落物袋中除秋末落叶期和叶衰期以菌食性土壤动物为主要优势类群外,其他各时期均以捕食性土壤动物为主要优势类群;柳杉凋落物分解各时期均以菌食性土壤动物为主要优势类群;麻栎凋落物分解在前3个时期以菌食性为主,而后以植食性土壤动物为主要优势类群。相关分析表明,在秋末落叶期和萌动期土壤动物的个体密度主要和氮、磷含量及其格局密切相关,叶衰期主要和难分解组分木质素显著相关。除在秋末落叶期土壤动物对凋落物分解的贡献率与土壤动物的个体密度显著相关外,其余主要物候关键时期均与土壤动物的类群密度及其食性显著相关。  相似文献   

4.
The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral‐bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual 13C and 15N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched 13C and 15N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance 13C–CO2 and 15N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in 13C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral‐associated organic matter.  相似文献   

5.
Summary Vascular plant decomposition was followed during two different years in one freshwater and one marine wetland in southeastern Georgia, USA, using a modified litterbag technique. Chemical analysis of plant material revealed different rates of decomposition for different components of the plant material (soluble components, -cellulose, hemicellulose, and lignin) and, further, that rates of decomposition of each component changed over time, such that the specific rate of decay for each fraction decreased as decomposition proceeded. Three mathematical models which differen in their treatment of the biochemical heterogeneity of vascular plant detritus were investigated with regard to their relative abilities to describe decomposition kinetics from the field incubations as well as from laboratory microcosm studies with radiolabeled plant material. A decaying coefficient model, which treats plant detritus as a single component but allows for a decreasing specific decomposition rate as material ages, was most successful in describing kinetics of decomposition. This model accomodates the changes in quality of vascular plant detritus resulting from preferential decomposition of more labile components (e.g., non-lignocellulosic material and holocellulose) and the relative accumulation of more refractory components (e.g., lignin) observed with time. The model also accomodates the potential transformation of various plant components into more refractory compounds (humification) during the decomposition process.  相似文献   

6.
王敏英  刘强 《广西植物》2012,32(5):630-636
为探究海南岛中部丘陵地区植被恢复过程中凋落物分解动态和土壤碳氮含量变化,采用时空互代法,在琼中湾岭地区同时具有经自然恢复的草丛、灌丛、次生林和人工恢复的马占相思林4种植物群落的两个山坡采用凋落物袋法进行凋落物交互分解实验。结果表明:4类型凋落物在同一样地中分解时,灌丛凋落物肖梵天花分解速率最高;同一种类凋落物在4个样地中分解时,在灌丛样地的分解率较高,而在3个自然植被样地中,分解速率为灌丛>草丛>次生林,显示随着植物群落进展演替的进程,凋落物分解速率呈现先增加后降低的趋势;马占相思凋落物和在马占相思林样地分解凋落物的分解率均低于次生林。土壤碳氮含量变化不显著,但有随植被恢复进程而增加的趋势。  相似文献   

7.
Decomposition of plant litter is a key process for the flow of energy and nutrients in ecosystems that may be sensitive to the loss of biodiversity. Two hypothetical mechanisms by which changes in plant diversity could affect litter decomposition are (1) through changes in litter species composition, and (2) by altering the decomposition microenvironment. We tested these ideas in relation to the short-term decomposition of herbaceous plant litter in experimental plant assemblages that differed in the numbers and types of plant species and functional groups that they contained to simulate loss of plant diversity. We used different litterbag experiments to separate the two potential pathways through which diversity could have an effect on decomposition. Our two litterbag trials showed that altering plant diversity affected litter breakdown differently through changes in decomposition microenvironment than through changes in litter composition. In the decomposition microenvironment experiment there was a significant but weak decline in decomposition rate in relation to decreasing plant diversity but no significant effect of plant composition. The litter composition experiment showed no effect of richness but significant effects of composition, including large differences between plant species and functional groups in litter chemistry and decomposition rate. However, for a nested subset of our litter mixtures decomposition was not accurately predicted from single-species bags; there were positive, non-additive effects of litter mixing which enhanced decomposition. We critically assess the strengths and limitations of our short-term litterbag trials in predicting the longer-term effects of changes in plant diversity on litter decomposition rates.  相似文献   

8.
We investigated the linkages between leaf litter quality and decomposability in a savanna plant community dominated by palatable-spinescent tree species. We measured: (1) leaf litter decomposability across five woody species that differ in leaf chemistry; (2) mass decomposition, nitrogen (N); and carbon (C) dynamics in leaf litter of a staple browse species (Acacia nigrescens) as well as (3) variation in litter composition across six sites that experienced very different histories of attack from large herbivores. All decomposition trials included litter bags filled with chopped straw to control for variation in site effects. We found a positive relationship between litter quality and decomposability, but we also found that Acacia and straw litter mass remaining did not significantly vary between heavily and lightly browsed sites. This is despite the fact that both the quality and composition of litter returned to the soil were significantly different across sites. We observed greater N resorption from senescing Acacia leaves at heavily browsed sites, which in turn contributed to increase the C:N ratio of leaf litter and caused greater litter N immobilization over time. This, together with the significantly lower tree- and herb-leaf litter mass beneath heavily browsed trees, should negatively affect decomposition rates. However, estimated dung and urine N deposition from both browsers and grazers was significantly greater at high- than at low-herbivory sites. We hypothesize that N inputs from dung and urine boost litter N mineralization and decomposition (especially following seasonal rainfall events), and thereby offset the effects of poor leaf litter quality at chronically browsed sites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
We evaluated differences in the rates and correlates of decomposition among 32 fern and angiosperm litter types collected in Hawai'i. Leptosporangiate ferns were separated into groups based on phylogeny: 'polypod' ferns, a monophyletic clade of ferns that diversified in the Cretaceous, and all other ('non-polypod') ferns that diversified earlier. We measured initial litter chemistry (nutrients and carbon chemistry), and mass loss and nitrogen (N), phosphorus (P), and calcium (Ca) of litter tissue during a 1-yr incubation in a common garden. Nutrient concentrations and carbon (C) chemistry differed significantly among litter types, and litter turnover ( k -values) ranged from 0.29 to 8.31. Decomposition rates were more closely correlated with nutrient concentration than is typically observed. Lignin:N was the best predictor of decomposition across all litter types combined; however, among plant groups different predictors of decomposition were important. Nitrogen and P concentrations best predicted fern decomposition, whereas C chemistry, particularly lignin concentration, was more important for angiosperm (monocot and dicot) decomposition. Among native plants, non-polypod ferns decomposed significantly more slowly than both polypod ferns and angiosperms. Contrary to our hypothesis, fern litter did not decompose more slowly than angiosperm litter overall. Nutrient dynamics in litter were affected by initial litter concentration more than phylogeny; low-nutrient litter immobilized more nutrients than high-nutrient litter. Systematic differences in rates of decomposition, and the importance of nutrients in predicting fern decomposition, imply that changes in species composition within ferns and between ferns and angiosperms could influence the functioning of ecosystems where ferns are important forest components.  相似文献   

10.
湿地枯落物分解及其对全球变化的响应   总被引:7,自引:0,他引:7  
孙志高  刘景双 《生态学报》2007,27(4):1606-1618
综述了当前湿地枯落物分解及其对全球变化响应的研究动态。湿地枯落物分解研究已随研究方法的改进而不断深化;当前湿地枯落物分解过程研究主要集中在有机质组分和元素含量变化特征的探讨上;湿地枯落物分解同时受生物因素(即枯落物性质以及参与分解的异养微生物和土壤动物的种类、数量和活性等)和非生物因素(即枯落物分解过程的外部环境条件,包括气候条件、水分条件、酸碱度与盐分条件以及湿地沉积的行为与特征等)的制约;模型已成为湿地枯落物分解研究的重要手段,对其研究也在不断深化。还讨论了湿地枯落物分解对于全球变化的响应,指出全球变暖、大气CO2浓度上升、干湿沉降及其化学组成改变可能对枯落物分解产生的直接、间接和综合影响。最后,指出了当前该领域研究尚存在的问题以及今后亟需加强的几个研究方面。  相似文献   

11.
Disruption to the physical structure of plant communities by habitat fragmentation can change microclimates, so leaf litter decomposition rates, being dependent on temperature and moisture, may also be affected. Similarly, smaller-scale structural features of plant communities can modify microclimates, and so may produce distinctive spatial patterns in decomposition rates. We investigated the effects of three types of structural feature having the potential to alter litter layer microclimates: fragmentation-induced modification that diminishes with distance from remnant edges (edge-core); concentric zones of locally modified conditions imposed by individual trees (Belsky–Canham); and highly localised abiotic modification collectively imposed by herbaceous plants (ground cover). We conducted a litter bag experiment in woodland remnants, testing whether the observed spatial variability in litter decomposition was attributable to one or more of these three structural features. The data provided the strongest support for the Belsky–Canham hypothesis, and the least support for the ground cover hypothesis. However, the hypotheses were not mutually exclusive, for each explained a component of the observed variability not explained by either of the other two. Proximity to remnant edge, proximity to trees, canopy light penetration, and ground cover density each explained part of the observed variability between plots. Decomposition rates did not differ with remnant area per se, for the effects of fragmentation were weak, and differed with cardinal direction. In contrast, the effects of individual trees were much stronger, and accounted for most of the between-plot variability. We found that litter decomposition rates in small remnants are only weakly affected by fragmentation, and we consider that the contributions of small remnants to landscape-scale functioning warrant closer attention.  相似文献   

12.
Aims Human impacts on natural ecosystems induce changes in their functioning through alterations in species richness, composition and evenness of plant communities. Most litter diversity–decomposition processes studies have only manipulated species richness, ignoring the role of evenness. Here, results from a field litterbag experiment are presented to test whether changes in evenness of species distribution in litter mixtures affected the strength of the litter-species richness–decomposition relationship.Methods Ten herbaceous species abundant in Mediterranean grassland communities and representative of different genera and functional groups were used. Species richness was directly manipulated to produce litter mixtures of three and six plant species, as well as litter of each individual species used. Each level of species richness was replicated several times such that each repeat had a different species composition. Three- and six-species litter mixtures were also treated to vary in evenness (three levels). Decomposition rate was assessed by percentage dry weight loss over the 90 days of the experiment.Important findings Decomposition rate was positively related to the linear increase in litter-species richness and was affected by the composition of the litter-species mixture. Decomposition rates differed significantly between evenness treatments and moreover, the strength of the positive relationship between litter-species richness and decomposition rate decreased notably in the low-evenness treatment. The effects of evenness on decomposition rate, at different richness levels, were partially explained by the differences in the initial litter mixture's carbon-to-nitrogen ratio within them. This study reveals that short-term decomposition rate is positively affected by both components of Mediterranean grassland litter-species diversity.  相似文献   

13.
荒漠草原4种典型植物群落枯落物分解速率及影响因素   总被引:3,自引:0,他引:3  
李学斌  陈林  吴秀玲  宋乃平  李昕 《生态学报》2015,35(12):4105-4114
测定荒漠草原甘草、赖草、蒙古冰草以及黑沙蒿等植物群落枯落物分解过程中质量损失量分析荒漠草原枯落物分解速,同时通过枯落物自身化学成份、含水率的测定,结合气候因子进行偏相关分析,探讨荒漠草原枯落物分解的影响因素。结果表明:荒漠草原4种植物群落枯落物的质量累积损失率随分解时间的延长而增加,但枯落物分解的质量损失量与时间并不呈线性相关;4种群落枯落物质量损失量大小依次均为:甘草群落赖草群落蒙古冰草群落黑沙蒿群落;荒漠草原枯落物分解采用单指数衰减的Olson模型拟合效果较好,4种植物群落中甘草群落枯落物分解最快,黑沙蒿群落分解最慢;蒙古冰草、赖草和甘草群落枯落物中N、P、K的含量显著高于黑沙蒿群落,但是C、木质素、纤维素、C/N、木质素/N和纤维素/N值则显著低于黑沙蒿群落枯落物,蒙古冰草群落、甘草群落、赖草群落和黑沙蒿群落4种群落枯落物分解速率(k)与枯落物初始N、P、K含量均呈显著正相关;偏相关分析表明,4种植物群落枯落物分解速率与降雨量、枯落物自身含水量的偏相关系数达显著水平,其余因子偏相关系数均未达显著水平。结合上述研究可以确定荒漠草原枯落物分解50%所需时间为2—5a,分解95%需8—24a。  相似文献   

14.
Although leaf‐cutter ants have been recognized as the dominant herbivore in many Neotropical ecosystems, their role in nutrient cycling remains poorly understood. Here we evaluated the relationship between plant palatability to leaf‐cutter ants and litter decomposability. Our rationale was that if preference and decomposability are related, and if ant consumption changes the abundance of litter with different quality, then ant herbivory could affect litter decomposition by affecting the quality of litter entering the soil. The study was conducted in a woodland savanna (cerrado denso) area in Minas Gerais, Brazil. We compared the decomposition rate of litter produced by trees whose fresh leaves have different degrees of palatability to the leaf‐cutter ant Atta laevigata. Our experiments did not indicate the existence of a significant relationship between leaf palatability to A. laevigata and leaf‐litter decomposability. Although the litter mixture composed of highly palatable plant species showed, initially, a faster decay rate than the mixture of poorly palatable species, this difference was no longer visible after about 6 months. Results were consistent regardless of whether litter invertebrates were excluded or not from litter bags. Similarly, experiments comparing the decomposition rate of litter from pairs of related plant species also showed no association between plant palatability and decomposition. Decomposition rate of the more palatable species was faster, slower or similar to that of the less palatable species depending upon the particular pair of species being compared. We suggest that the traits that mostly influence the decomposition rate of litter produced by cerrado trees may not be the same as those that influence plant palatability to leaf‐cutter ants. Atta laevigata select leaves of different species based – at least in part – on their nitrogen content, but N content was a poor predictor of the decomposition rates of the species we studied.  相似文献   

15.
Litter decomposition, a major determinant of ecosystem functioning, is strongly influenced by the litter quality of different species. We aimed at (1) relating interspecific variation in leaf litter decomposition rate to the functional types different species belong to; and (2) understanding the chemical and/or physical basis for such variation and its robustness to environmental factors. We selected 52 Angiosperms from a climatic gradient in central-western Argentina, representing the widest range of functional types and habitats published so far. Ten litter samples of each species were simultaneously buried for 9 weeks during the 1996 summer in an experimental decomposition bed. Decomposition rate was defined as the percentage of dry mass loss after incubation. Chemical litter quality was measured as carbon (C) content, nitrogen (N) content, and C-to-N ratio. Since tensile strength of litter and living leaves were strongly correlated, the latter was chosen as an indicator of physical litter quality. A subset of 15 species representing different functional types was also incubated in England for 15 weeks, following a similar experimental procedure. Litter C-to-N and leaf tensile strength of the leaves showed the strongest negative associations with decomposition rate, both at the species and at the functional-type level. Decomposition rates of the same species in Argentina and in England were strongly correlated. This reinforces previous evidence that species rankings in terms of litter decomposition rates are robust to methodological and environmental factors. This paper has shown new evidence of plant control over the turnover of organic matter through litter quality, and confirms, over a broad spectrum of functional types, general models of resource allocation. The strong correlations between leaf tensile strength – a trait that is easy and quick to measure in a large number of species – decomposition rate, and C-to-N ratio indicate that leaf tensile strength can be useful in linking plant quality to decomposition patterns at the ecosystem level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Although the importance of stream condition for leaf litter decomposition has been extensively studied, little is known about how processing rates change in response to altered riparian vegetation community composition. We investigated patterns of plant litter input and decomposition across 20 boreal headwater streams that varied in proportions of riparian deciduous and coniferous trees. We measured a suite of in‐stream physical and chemical characteristics, as well as the amount and type of litter inputs from riparian vegetation, and related these to decomposition rates of native (alder, birch, and spruce) and introduced (lodgepole pine) litter species incubated in coarse‐ and fine‐mesh bags. Total litter inputs ranged more than fivefold among sites and increased with the proportion of deciduous vegetation in the riparian zone. In line with differences in initial litter quality, mean decomposition rate was highest for alder, followed by birch, spruce, and lodgepole pine (12, 55, and 68% lower rates, respectively). Further, these rates were greater in coarse‐mesh bags that allow colonization by macroinvertebrates. Variance in decomposition rate among sites for different species was best explained by different sets of environmental conditions, but litter‐input composition (i.e., quality) was overall highly important. On average, native litter decomposed faster in sites with higher‐quality litter input and (with the exception of spruce) higher concentrations of dissolved nutrients and open canopies. By contrast, lodgepole pine decomposed more rapidly in sites receiving lower‐quality litter inputs. Birch litter decomposition rate in coarse‐mesh bags was best predicted by the same environmental variables as in fine‐mesh bags, with additional positive influences of macroinvertebrate species richness. Hence, to facilitate energy turnover in boreal headwaters, forest management with focus on conifer production should aim at increasing the presence of native deciduous trees along streams, as they promote conditions that favor higher decomposition rates of terrestrial plant litter.  相似文献   

17.
The arid and semi‐arid drylands of the world are increasingly recognized for their role in the terrestrial net carbon dioxide (CO2) uptake, which depends largely on plant litter decomposition and the subsequent release of CO2 back to the atmosphere. Observed decomposition rates in drylands are higher than predictions by biogeochemical models, which are traditionally based on microbial (biotic) degradation enabled by precipitation as the main mechanism of litter decomposition. Consequently, recent research in drylands has focused on abiotic mechanisms, mainly photochemical and thermal degradation, but they only partly explain litter decomposition under dry conditions, suggesting the operation of an additional mechanism. Here we show that in the absence of precipitation, absorption of dew and water vapor by litter in the field enables microbial degradation at night. By experimentally manipulating solar irradiance and nighttime air humidity, we estimated that most of the litter CO2 efflux and decay occurring in the dry season was due to nighttime microbial degradation, with considerable additional contributions from photochemical and thermal degradation during the daytime. In a complementary study, at three sites across the Mediterranean Basin, litter CO2 efflux was largely explained by litter moisture driving microbial degradation and ultraviolet radiation driving photodegradation. We further observed mutual enhancement of microbial activity and photodegradation at a daily scale. Identifying the interplay of decay mechanisms enhances our understanding of carbon turnover in drylands, which should improve the predictions of the long‐term trend of global carbon sequestration.  相似文献   

18.
天童国家森林公园常见植物凋落叶分解的研究   总被引:32,自引:2,他引:32       下载免费PDF全文
 选择天童地区常绿阔叶林及其退化群落常见植物种为对象,着重探讨分解速率和基质营养含量以及比表面积(Specific Leaf Area, SLA)的关系,并试图通过单独分解试验和混合分解试验的比较,从物种、功能群角度探讨凋落叶多样性和分解这一生态系统过程的关系,为深入研究常绿阔叶林常见植物种的营养策略、群落养分循环等奠定基础,也为植被恢复、森林生态系统管理提供理论依据。结果表明:所有凋落叶随时间进程失重率增大,但失重率并不与时间呈线性相关;凋落叶分解后N、P均发生了变化,大多数凋落叶在分解初期N、P均发生了积累,营养元素的释放和富集与凋落叶初始营养状况无明显的相关性。凋落叶的年分解系数与凋落叶中的初始N含量有较高的相关性,而与初始P含量则无显著的相关性;凋落叶的分解速率与成熟叶的面积无相关性,而与其SLA有很强的相关性。通过模型分析,天童地区大多数常见树种凋落叶分解95%需1~4年,平均是2.54年;分解率最高的物种为山鸡椒(Litsea cubeba),其值为6.280,最低的为黄丹木姜子(Litsea elongata),其值为0.558。凋落物混合对分解有很大的影响,虽在初期对分解有阻碍作用,但长期是促进的。若不考虑功能群差异,则可得出多样性的增加有利于分解的结论。功能群数目的增加在凋落物分解前期对分解起促进作用,但这种作用随分解的进展逐渐减小。混合物种的特性往往是决定分解过程的最重要的因素。  相似文献   

19.
为了探究生长期间不同土壤厚度、水分及种植方式处理对草本植物凋落物分解质量损失和化学计量特征的的影响,采用分解袋法,在露天分解床上分解经过生长期间2种土壤厚度(对照土壤厚度和浅土处理)、2种水分(正常灌水处理和干旱处理)和2种种植方式(单种和混种)处理的苇状羊茅(Festuca arundinacea Schreb.)和黑麦草(Lolium perenne L.)凋落物,研究生长期间土壤厚度和水分减少及不同的种植方式是否通过改变两物种初始凋落物质量、产量和组分来影响自身凋落物分解。结果发现:(1)与对照组(CK)相比,在干旱组(D)和浅土+干旱组(SD),两物种地上、根系和总的凋落物质量损失率、初始N和P含量均显著增加,凋落物产量、C/N和C/P显著降低,凋落物地上组分比大体上无显著变化;而不同的种植方式处理对各组分质量损失率、元素含量、计量比、凋落物产量和组分比大体上无显著影响;(2)两物种地上、根系和总凋落物的质量损失率分别与地上、根系和总N含量呈显著正相关,与C/N呈显著负相关,与凋落量呈显著负相关,而总凋落物质量损失率与地上凋落物组分比呈显著正相关。结果表明,生长期间干旱和浅土+干旱处理能够通过影响苇状羊茅和黑麦草的初始凋落物质量、产量和组分比来加快地上、根系和总凋落物分解,其中凋落物N含量和C/N是影响两物种凋落物分解快慢的主要原因。  相似文献   

20.
Summary The decomposition of litter and roots ofChenopodium album, Desmostachya bipinnata and mixed grass samples for a period of 402 days and ofDichanthium annulatum andSesbania bispinosa for a period of 278 days was studied in a tropical grassland. Litter bags positioned at midcanopy height, soil surface and at five cm depth below the soil surface and root bags placed at 5, 15, 25 and 35 cm depths belowground were used. For the total study period, the cumulative weight loss in litter bags was: Chenopodium=76–100%; Desmostachya=33–98%; Dichanthium=26–96%; mixed grass=43–99% and Sesbania=25–99%. The weight loss in root bags was: Chenopodium=93–100%; Desmostachya=47–56%; Dichanthium=71–87%; mixed grass=61–82%; Sesbania=87–100%. The nature of plant species affected decomposition rates. The position of litter/root bags also affected the decomposition rates. The mean relative decomposition rates of litter as well as of root material were found to be highest in rainy season and lowest in winter months. Rainfall, particularly the frequency of rainfall, was an important factor affecting decomposition rates. The litter species characterized by highest concentration of nitrogen, ash, acid detergent cell wall component and lowest concentration of carbon, cellulose and lignin, decomposed rapidly. In the case of roots, the material having high nitrogen, carbon, cellulose and ash content and low C/N ratio and lignin content decomposed rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号