首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

2.
中国科学院西双版纳热带植物园(简称“版纳植物园”)保存着上万种植物,且生境多样,具有较高的蝴蝶多样性。本研究选择三类代表性生境:片段化雨林、次生林和专类园,聚焦于环境指示物种蝴蝶这一类群,通过样线法系统调查一年内蝴蝶多样性及其变化。观测结果显示:蝴蝶在版纳植物园内全年发生,共调查到其成虫5科126属218种6 015头,其中蛱蝶科多样性最高。蝴蝶种类及数量随月动态变化,生境间有差异,7-8月种类和数量达到最高峰;1月种类最少,而5-6月数量最低;每月均出现的种类仅有12种,绝大部分种类分散发生于不同月份。影响蝴蝶群落多样性的气候因子中,月最高温显著影响蝴蝶群落的物种丰富度和数量,月最低温显著影响物种丰富度、香农多样性和辛普森多样性,月平均温仅显著影响香农多样性。在版纳的三个典型季节中蝴蝶多样性存在差异,雨季物种丰富度最高,干热季香农和辛普森指数最高;雨季和雾凉季蝴蝶群落组成差异大,仅雾凉季与干热季的蝴蝶群落呈现中等程度相似。此外,在片段化雨林、次生林和专类园这3种不同生境中,蝴蝶群落组成也存在差异,蝴蝶物种丰富度和香农指数在次生林中最高,而辛普森指数则是片段化雨林最高;仅次生林与片段化雨林的蝴蝶群落呈现出中等程度相似。本研究揭示了版纳植物园蝴蝶群落的种类组成与月动态变化规律,并明确了不同季节和生境中蝴蝶群落的多样性变化,可为区域蝴蝶多样性观测及保护提供参考依据。  相似文献   

3.
A key part of tropical forest spatial complexity is the vertical stratification of biodiversity, with widely differing communities found in higher rainforest strata compared to terrestrial levels. Despite this, our understanding of how human disturbance may differentially affect biodiversity across vertical strata of tropical forests has been slow to develop. For the first time, how the patterns of current biodiversity vary between three vertical strata within a single forest, subject to three different types of historic anthropogenic disturbance, was directly assessed. In total, 229 species of butterfly were detected, with a total of 5219 individual records. Butterfly species richness, species diversity, abundance and community evenness differed markedly between vertical strata. We show for the first time, for any group of rainforest biodiversity, that different vertical strata within the same rainforest, responded differently in areas with different historic human disturbance. Differences were most notable within the canopy. Regenerating forest following complete clearance had 47% lower canopy species richness than regenerating forest that was once selectively logged, while the reduction in the mid-storey was 33% and at ground level, 30%. These results also show for the first time that even long term regeneration (over the course of 30 years) may be insufficient to erase differences in biodiversity linked to different types of human disturbance. We argue, along with other studies, that ignoring the potential for more pronounced effects of disturbance on canopy fauna, could lead to the underestimation of the effects of habitat disturbance on biodiversity, and thus the overestimation of the conservation value of regenerating forests more generally.  相似文献   

4.
Tropical forest canopies are among the most species-rich terrestrial habitats on earth and one of the remaining relatively unexplored biotic frontiers. Epiphytic bromeliads provide microhabitat for a high diversity of organisms in tropical forest canopies and are considered a keystone resource. A number of amphibians inhabit these phytotelmata, yet their ecological role and status in forest canopies remains unknown. For this study, anurans were collected from an upper canopy tank bromeliad (Aechmea zebrina) at ∼20–45 m (x¯ = 33 m) above the forest floor. Bromeliads were sampled from trees located near trails in undisturbed primary rainforest and oil access roads in the Yasuní Biosphere Reserve of Amazonian Ecuador. We collected 95 anurans representing 10 species from 160 bromeliads in 32 trees. We used generalized linear mixed models to assess the effects of disturbance and habitat factors on the occupancy and abundance of anurans collected. Bromeliads in forest along oil roads had a lower occupancy and abundance of anurans than those in undisturbed forest, a somewhat unexpected result due to the intactness and quality of forest adjacent to the roads. Recorded habitat variables had no relationship with occupancy or abundance of anurans, and did not differ significantly between treatments. Our findings reveal that even the minimal footprint of natural resource extraction operations, primarily roads, in rainforest environments can have significant negative impacts on the unique upper canopy anuran community. Based on these results, we recommend that natural resource development treat rainforest habitat as an offshore system where roads are not used, employ industry best practice guidelines, and current access roads be protected from colonization and further deforestation.  相似文献   

5.
Climate change is affecting the distribution of species and the functioning of ecosystems. For species that are slow growing and poorly dispersed, climate change can force a lag between the distributions of species and the geographic distributions of their climatic envelopes, exposing species to the risk of extinction. Climate also governs the resilience of species and ecosystems to disturbance, such as wildfire. Here we use species distribution modelling and palaeoecology to assess and test the impact of vegetation–climate disequilibrium on the resilience of an endangered fire‐sensitive rainforest community to fires. First, we modelled the probability of occurrence of Athrotaxis spp. and Nothofagus gunnii rainforest in Tasmania (hereon “montane rainforest”) as a function of climate. We then analysed three pollen and charcoal records spanning the last 7,500 cal year BP from within both high (n = 1) and low (n = 2) probability of occurrence areas. Our study indicates that climatic change between 3,000 and 4,000 cal year bp induced a disequilibrium between montane rainforests and climate that drove a loss of resilience of these communities. Current and future climate change are likely to shift the geographic distribution of the climatic envelopes of this plant community further, suggesting that current high‐resilience locations will face a reduction in resilience. Coupled with the forecast of increasing fire activity in southern temperate regions, this heralds a significant threat to this and other slow growing, poorly dispersed and fire sensitive forest systems that are common in the southern mid to high latitudes.  相似文献   

6.
The expansion of rainforest pioneer trees into long‐unburnt open forests has become increasingly widespread across high rainfall regions of Australia. Increasing tree cover can limit resource availability for understorey plant communities and reduce understorey diversity. However, it remains unclear if sclerophyll and rainforest trees differ in their competitive exclusion of understory plant communities, which contain most of the floristic diversity of open forests. Here, we examine dry open forest across contrasting fire histories (burnt and unburnt) and levels of rainforest invasion (sclerophyll or rainforest midstorey) to hindcast changes in understorey plant density, richness and composition. The influence of these treatments and other site variables (midstorey structure, midstorey composition and soil parameters) on understorey plant communities were all examined. This study is the first to demonstrate significantly greater losses of understorey species richness, particularly of dry open‐forest specialists, under an invading rainforest midstorey compared to a typical sclerophyll midstorey. Rainforest pioneers displaced over half of the understorey plant species, and reduced ground cover and density of dry forest specialists by ~90%. Significant understorey declines also occurred with increased sclerophyll midstorey cover following fire exclusion, although losses were typically less than half that of rainforest‐invaded sites over the same period. Understorey declines were closely related to leaf area index and basal area of rainforest and wattle trees, suggesting competitive exclusion through shading and potentially belowground competition for water. Around 20% of displaced species lacked any capacity for population recovery, while transient seed banks or distance‐limited dispersal may hinder recovery for a further 68%. We conclude that rainforest invasion leads to significant declines in understorey plant diversity and cover in open forests. To avoid elimination of local native plant populations in open forests, fires should occur with sufficient frequency to prevent overstorey cover from reaching a level where shade‐intolerant species fail to thrive.  相似文献   

7.
We examined changes in the types of fungi consumed by six species of small mammals across a habitat gradient in north‐eastern New South Wales that graded from swamp, to woodland, to open forest and then to rainforest. All mammals ate some fungus, but only bush rats (Rattus fuscipes) regularly did so, and their diet included most of the fungal taxa that we identified across all mammals in the study. The composition of bush rat diet changed significantly with each change in habitat from woodland, to forest, to rainforest. In particular, there was a significant difference in the diets of rats caught either side of the open forest‐rainforest ecotone, which marks the change in fungal community from one dominated by ectomycorrhizal fungi, to a community dominated by arbuscular mycorrhizal fungi. Movement patterns of bush rats living around the open forest‐rainforest ecotone suggest that they transport fungal spores between these contrasting fungal communities. Therefore, bush rats have the potential, by way of spore dispersal, to influence the structure of vegetation communities.  相似文献   

8.
The genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence. We characterized the diversity of soil-borne Phytophthora communities in the North French Guiana rainforest and investigated how they are structured by host identity and environmental factors. In this little-explored habitat, 250 soil cores were sampled from 10 plots hosting 10 different plant families across three forest environments (Terra Firme, Seasonally Flooded and White Sand). Phytophthora diversity was studied using a baiting approach and metabarcoding (High-Throughput Sequencing) on environmental DNA extracted from both soil samples and baiting-leaves. These three approaches revealed very similar communities, characterized by an unexpected low diversity of Phytophthora species, with the dominance of two cryptic species close to Phytophthora heveae. As expected, the Phytophthora community composition of the French Guiana rainforest was significantly impacted by the host plant family and environment. However, these plant pathogen communities are very small and are dominated by generalist species, questioning their potential roles as drivers of plant diversity in these Amazonian forests.  相似文献   

9.
We set up two alternative hypotheses on how environmental variables could foster nestedness; one of “nested habitats” and another of “nested habitat quality”. The former hypothesis refers to situations where the nestedness of species depends on a nestedness of discrete habitats. The latter considers situations where all species in an assemblage increase in abundance along the same environmental gradient, but differ in specialisation or tolerance. We tested whether litter‐dwelling land snails (terrestrial gastropods) in boreal riparian forest exhibited a nested community structure, whether such a pattern was related to differences in environmental variables among sites, and which of the two hypotheses that best could account for the found pattern. We sampled litter from 100 m2 plots in 29 mature riparian forest sites along small streams in the boreal zone of Sweden. The number of snail species varied between 3 and 14 per site. Ranking the species‐by‐site matrix by PCA scores of the first ordination axis revealed a similarly significant nested pattern as when the matrix was sorted by number of species, showing that the species composition in this meta‐community can be properly described as nested. Several environmental variables, most notably pH index, were correlated with the first PCA axis. All but two species had positive eigenvectors in the PCA ordination and the abundance increased considerably along the gradient for most of the species implying that the hypothesis of “nested habitats” was rejected in favour of the “nested habitat quality” hypothesis. Analyses of nestedness have seldom been performed on equal sized plots, and our study shows the importance of understanding that variation in environmental variables among sites can result in nested communities. The conservation implications are different depending on which of our two hypotheses is supported; a conservation focus on species “hotspots” is more appropriate if the communities are nested because of “nested habitat quality”.  相似文献   

10.
We examine the diversity and structure of land-snail faunas in indigenous rainforest communities and three types of forestry plantation in Kakamega Forest, western Kenya. Using plot-based, standardized sampling consisting of fixed-time direct searching and fixed-volume litter sieving we estimated molluscan diversity and abundance in monoculture plantation plots of the exotic, non-African tree species Bischofia javanica and Pinus spp., and the central African tree Maesopsis eminii which is an indigenous component of the Kakamega rainforest. Overall, 41, 39, 41 and 34 mollusc species were recorded in indigenous forest, Maesopsis, Bischofia and Pinus plantations respectively. The mean number of species and mean number of specimens per plot were 15–49% and 6–54% lower respectively in the plantations relative to indigenous forest. Abundance and species number were suppressed the most in the Pinus stands, and the least in the plantations of indigenous Maesopsis. Species per plot, Shannon index and abundance were lowest in the Pinus plantation and highest in the indigenous forest. Snails were more abundant in Maesopsis than in Bischofia, but mean species per plot and total species number did not differ significantly between these plantation types. Shannon evenness indices showed that the indigenous forest faunas were more uniform in terms of species abundance, whereas the three plantation types were dominated by a small number of species. Several species were confined to the indigenous rain forest. Although most species were present in both indigenous forest and plantations, many species were significantly more abundant in the rainforest communities. The potential use of groups of these species as indicators of forest conditions is discussed. Overall, the Maesopsis and Bischofia plantations support a substantial proportion of the indigenous rainforest's mollusc fauna. This maybe partly because of the relatively close proximity of indigenous stands to plantations, which can facilitate recolonisation. However, the finding illustrates that plantations hold the potential, at least in some circumstances, to provide alternative habitats for forest molluscs where indigenous rainforest has been cleared.  相似文献   

11.
Null‐model analysis of co‐occurrence patterns is a powerful tool to identify ‘structure’ in community ecology data sets. We evaluated the community structure of chameleons in rainforest regions of Nigeria and Cameroon using available data in the literature, including peer‐reviewed articles and unpublished environmental reports to industries. We performed Monte Carlo simulations (5000 iterations, using the sequential swap algorithm) under several model assumptions to derive co‐occurrence patterns among species. Food and spatial (habitat) segregation patterns in both lowland rainforest and montane forest were investigated. We subjected four indices of co‐occurrence patterns (C‐ratio, number of checkerboard species pairs, number of species combinations, and V‐score) to randomization procedures. Overall, the chameleon communities do not show random organization, but instead exhibit precise deterministic patterns. In lowland rainforest, chameleon communities are assembled deterministically along the food niche resource axis, but not along the habitat niche resource axis. The opposite holds for chameleon communities in montane rainforest. We predict that these patterns can be generalized to other regions of tropical Africa, thus helping to determine the general structure of chameleon communities in tropical African forests.  相似文献   

12.
Ecosystem restoration can help reverse biodiversity loss, but whether faunal communities of forests undergoing restoration converge with those of primary forest over time remains contentious. There is a need to develop faunal indicators of restoration success that more comprehensively reflect changes in biodiversity and ecosystem function. Ants are an ecologically dominant faunal group and are widely advocated as ecological indicators. We examine ant species and functional group responses on a chronosequence of rainforest restoration in northern Australia, and develop a novel method for selecting and using indicator species. Four sampling techniques were used to survey ants at 48 sites, from grassland, through various ages (1–24 years) of restoration plantings, to mature forest. From principal components analysis of seven vegetation metrics, we derived a Forest Development Index (FDI) of vegetation change along the chronosequence. A novel Ant Forest Indicator Index (AFII), based on the occurrences of ten key indicator species associated with either grassland or mature forest, was used to assess ant community change with forest restoration. Grasslands and mature forests supported compositionally distinct ant communities at both species and functional levels. The AFII was strongly correlated with forest development (FDI). At forest restoration sites older than 5–10 years that had a relatively closed canopy, ant communities converged on those of mature rainforest, indicating a promising restoration trajectory for fauna as well as plants. Our findings reinforce the utility of ants as ecological indicators and emphasize the importance of restoration methods that achieve rapid closed‐canopy conditions. The novel AFII assessed restoration status from diverse and patchily distributed species, closely tracking ant community succession using comprehensive species‐level data. It has wide applicability for assessing forest restoration in a way that is relatively independent of sampling methodology and intensity, and without a need for new comparative data from reference sites.  相似文献   

13.
In the Taita Hills in southern Kenya, remnants of the original Afromontane forest vegetation are restricted to isolated mountain peaks. To assess the level of degradation and the need for forest restoration, we examined how forest plant communities and their indicator species vary between and within remnant patches of cloud forest. We used ordinal abundance data to compare plant communities in eight forest fragments. We also analyzed data on the diversity and abundance of trees in 57 0.1 ha plots to compare tree communities within and between the largest two of these fragments, Ngangao (120 ha) and Mbololo (220 ha). The extant vegetation of the Taita Hills at landscape scale consists of secondary moist montane to intermediate montane forest. There was a high species dissimilarity between fragments (69%). Variation in species composition coincided with an abiotic gradient related to elevation. At plot level, secondary successional species and species of forest edges were most abundant and most frequent. Inferred clusters of plots almost entirely coincided with the two forest fragments. Indicator species associated with forest margins and gaps were more frequent in the smaller of the two forest fragments, while indicators for the larger fragment were more typical for less disturbed moist forest. Abiotic site variability but also different levels of disturbance determine site-specific variants of the montane forest. Conservation efforts should not only focus on maintaining forest quantity (size), but also on forest quality (species composition). Late-successional rainforest species are underrepresented in the woody plant communities of the Taita Hills and assisting restoration of viable populations of cloud forest climax tree species is urgently needed.  相似文献   

14.
The Brazilian Atlantic rainforest consists of a typical tropical rainforest on mountain slopes, and stands out as a biodiversity hotspot for its high species richness and high level of species endemism. This forest is bordered by plant communities with lower species diversity, due mostly to more extreme environmental conditions than those found in the mesic rainforest. Between the mountain slopes and the sea, the coastal plains have swamp forests, dry semi-deciduous forests and open thicket vegetation on marine sand deposits. At the other extreme, on top of the mountains (>2000 m a.s.l.), the rainforest is substituted by high altitude fields and open thicket vegetation on rocky outcrops. Thus, the plant communities that are marginal to the rainforest are subjected either to flooding, drought, oceanicity or cold winter temperatures. It was found that positive interactions among plants play an important role in the structuring and functioning of a swamp forest, a coastal sandy vegetation and a cold, high altitude vegetation in the state of Rio de Janeiro. Moreover, only a few species seem to adopt this positive role and, therefore, the functioning of these entire systems may rely on them. Curiously, these nurse plants are often epiphytes in the rainforest, and at the study sites are typically terrestrial. Many exhibit crassulacean acid metabolism. Conservation initiatives must treat the Atlantic coastal vegetation as a complex rather than a rainforest alone.  相似文献   

15.
Understanding how well tropical forest biodiversity can recover following habitat change is often difficult due to conflicting assessments arising from different studies. One often overlooked potentially confounding factor that may influence assessments of biodiversity response to habitat change, is the possibility that different survey methodologies, targeting the same indicator taxon, may identify different patterns and so lead to different conclusions. Here we investigated whether two different but commonly used survey methodologies used to assess amphibian communities, pitfall trapping and nocturnal transects, indicate the same or different responses of amphibian biodiversity to historic human induced habitat change. We did so in a regenerating rainforest study site located in one of the world’s most biodiverse and important conservation areas: the Manu Biosphere Reserve. We show that the two survey methodologies tested identified contrasting biodiversity patterns in a human modified rainforest. Nocturnal transect surveys indicated biodiversity differences between forest with different human disturbance histories, whereas pitfall trap surveys suggested no differences between forest disturbance types, except for community composition. This pattern was true for species richness, diversity, overall abundance and community evenness and structure. For some fine scale metrics, such as species specific responses and abundances of family groups, both methods detected differences between disturbance types. However, the direction of differences was inconsistent between methods. We highlight that for assessments of rainforest recovery following disturbance, survey methods do matter and that different biodiversity survey methods can identify contrasting patterns in response to different types of historic disturbance. Our results contribute to a growing body of evidence that arboreal species might be more sensitive indicators than terrestrial communities.  相似文献   

16.
Abstract

We analysed the effects of patch size and isolation on vascular plants in Quercus cerris forest surrounding Rome (Italy). We randomly sampled 96 plots within 18 forest patches with homogeneous environmental variables; the patches ranged from 1.4 ha to 424.5 ha and were divided into four size classes. We performed the analyses at the patch level using linear regression. At the size class level, the analysis of species richness response to fragmentation (area effect) was performed with ANOVA, while the effect on community composition was analysed by means of PERMANOVA. We also investigated which species could be used as indicator species for each size class. Lastly, to evaluate the advantages of conserving several small patches as opposed to few large ones, we used a cumulative area approach ranking forest fragments. The correlation between species richness and patch area was positive, with a significant difference between the “large” and “small” size classes, while analysis on community composition showed that “large” versus “medium” and “large” versus “small” were significantly different. Nemoral species were recognised as indicators in the “large” class, and shrub and edge species in the “small” class. Our results indicate that 10 ha may be a suitable forest size threshold for planning and conservation.  相似文献   

17.
Geometrid moths were investigated at 26 sites on 9 elevational levels along an elevational transect at Mt. Kilimanjaro (Tanzania), stretching from the fine‐grained mosaic of small agroforest plots with combined cultivation of trees, shrubs and crops at 1650 m through mountain rainforest to heathland at 3300 m. We sampled moths manually at light between 19 : 00 and 22 : 00 in the rainy seasons of March to May and October to January in the years 2000, 2001 and 2002. Along the transect, the composition of moth communities changed from a domination by Sterrhinae and Ennominae to a dominance of Larentiinae with increasing elevation. Overall, alpha diversity was very low compared to other tropical mountain regions. Fisher's alpha showed a maximum of 30 in the agroforest mosaic at 1650 m and decreased to values around 12 in the mountain rainforest. Communities of geometrid moths within the forest belt were significantly dissimilar from communities outside the forest. The diversity patterns on Mt. Kilimanjaro can be related to the young age, island‐like position and history of the mountain. These factors have led to the formation of a homogeneous upper mountain rainforest habitat which in turn houses homogeneous moth communities with a low diversity compared to habitats at lower elevations. Here, a heterogeneous habitat mosaic allowing the intrusion of savannah species into this former forest habitat may account for an increased diversity. In the heath zone above the forest, climatic conditions are very harsh, permitting only few specialists to thrive in this ericaceous woodland. Edge effects were discernible at the forest–heathland boundary where some moth species from heathland invaded the closed forest. At the boundary between agroforest and a forest mosaic of exotic Acacia and Eucalyptus forest plantations and natural mountain forest, diversity values remained low as the dominant species Chiasmia fuscataria accounted for far higher proportions than other dominant species in any of the other habitats.  相似文献   

18.
The loss of biodiversity caused by human activity is assumed to alter ecosystem functioning. However our understanding of the magnitude of the effect of these changes on functional diversity and their impact on the dynamics of ecological processes is still limited. We analyzed the functional diversity of copro-necrophagous beetles under different conditions of land use in three Mexican biosphere reserves. In Montes Azules pastures, forest fragments and continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of different sizes were analyzed and in Barranca de Metztitlán two types of xerophile scrub with different degrees of disturbance from grazing were analyzed. We assigned dung beetle species to functional groups based on food relocation, beetle size, daily activity period and food preferences, and as measures of functional diversity we used estimates based on multivariate methods. In Montes Azules functional richness was lower in the pastures than in continuous rainforest and rainforest fragments, but fragments and continuous forest include functionally redundant species. In small rainforest fragments (<5 ha) in Los Tuxtlas, dung beetle functional richness was lower than in large rainforest fragments (>20 ha). Functional evenness and functional dispersion did not vary among habitat types or fragment size in these reserves. In contrast, in Metztitlán, functional richness and functional dispersion were different among the vegetation types, but differences were not related to the degree of disturbance by grazing. More redundant species were found in submontane than in crassicaule scrub. For the first time, a decrease in the functional diversity in communities of copro-necrophagous beetles resulting from changes in land use is documented, the potential implications for ecosystem functioning are discussed and a series of variables that could improve the evaluation of functional diversity for this biological group is proposed.  相似文献   

19.
We compared bird community responses to the habitat transitions of rainforest‐to‐pasture conversion, consequent habitat fragmentation, and post‐agricultural regeneration, across a landscape mosaic of about 600 km2 in the eastern Australian subtropics. Birds were surveyed in seven habitats: continuous mature rainforest; two size classes of mature rainforest fragment (4–21 ha and 1–3 ha); regrowth forest patches dominated by a non‐native tree (2–20 ha, 30–50 years old); two types of isolated mature trees in pasture; and treeless pasture, with six sites per habitat. We compared the avifauna among habitats and among sites, at the levels of species, functional guilds, and community‐wide. Community‐wide species richness and abundance of birds in pasture sites were about one‐fifth and one‐third, respectively, of their values in mature rainforest (irrespective of patch size). Many measured attributes changed progressively across a gradient of increased habitat simplification. Rainforest specialists became less common and less diverse with decreased habitat patch size and vegetation maturity. However, even rainforest fragments of 1–3 ha supported about half of these species. Forest generalist species were largely insensitive to patch size and successional stage. Few species reached their greatest abundance in either small rainforest fragments or regrowth. All pastures were dominated by bird species whose typical native habitats were grassland, wetland, and open eucalypt forest, while pasture trees modestly enhanced local bird communities. Overall, even small scattered patches of mature and regrowth forest contributed substantial bird diversity to local landscapes. Therefore, maximizing the aggregate rainforest area is a useful regional conservation strategy.  相似文献   

20.
Residual patches of forest remaining after natural or anthropogenic disturbance may facilitate regeneration of fragmented forest. However, residual patch function remains unclear, especially after natural wildfire. We investigate the role of residual boreal forest patches as refugia for bryophytes and ask the question, do they house bryophyte communities similar to those encountered in undisturbed forests? Bryophytes were sampled in three habitat types in black spruce boreal forests illustrating a gradient of disturbance severity: undisturbed forests, residual patches and burned matrices. Temporal, disturbance severity, spatial and structural variables of habitats were also recorded. Bryophyte community composition differed among habitat types with residual patches characterized by higher species richness, the loss of forest specialists and the addition of disturbance-prone species. The bryophyte community found in residual patches is at the interface between the communities of undisturbed forests and burned matrices. As residual patches did not conserve all species, particularly forest specialists, they were not refugia. However, we identify temporal, spatial and structural characteristics that can maintain bryophyte communities most similar to undisturbed forests and enhance residual patch “refugia potential”. Residual patches enhance bryophyte diversity of the landscape housing species that cannot survive in the burned matrix. As conclusion we discuss the use of retention patches in harvested stands, together with the preservation of undisturbed stands that house singular bryophyte communities and especially sensitive forest specialists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号