首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aphid endosymbionts in vivo in young hosts synthesized almost exclusively only one protein, symbionin. The synthesis of symbionin declined with age of the host and instead the endosymbiont began to express some of its own genes which were expressed in vitro but were repressed in vivo in young host. A prolonged treatment of young host with cycloheximide brought about a physiological state similar to that in old insect. Though in the very old insect symbionin was no longer produced by its endosymbiont, the host seemed to depend almost entirely upon the gene products of the endosymbiont.  相似文献   

2.
Female‐producing parthenogenesis can be induced by endosymbionts that increase their transmission by manipulating host reproduction. Our literature survey indicates that such endosymbiont‐induced parthenogenesis is known or suspected in 124 host species from seven different arthropod taxa, with Wolbachia as the most frequent endosymbiont (in 56–75% of host species). Most host species (81%, 100 out of 124) are characterized by haplo‐diploid sex determination, but a strong ascertainment bias likely underestimates the frequency of endosymbiont‐induced parthenogenesis in hosts with other sex determination systems. In at least one taxon, hymenopterans, endosymbionts are a significant driver of transitions from sexual to parthenogenetic reproduction, with one‐third of lineages being parthenogenetic as a consequence of endosymbiont infection. Endosymbiont‐induced parthenogenesis appears to facilitate the maintenance of reproductive polymorphism: at least 50% of species comprise both sexual (uninfected) and parthenogenetic (infected) strains. These strains feature distribution differences similar to the ones documented for lineages with genetically determined parthenogenesis, with endosymbiont‐induced parthenogens occurring at higher latitudes than their sexual relatives. Finally, although gamete duplication is often considered as the main mechanism for endosymbiont‐induced parthenogenesis, it underlies parthenogenesis in only half of the host species studied thus far. We point out caveats in the methods used to test for endosymbiont‐induced parthenogenesis and suggest specific approaches that allow for firm conclusions about the involvement of endosymbionts in the origin of parthenogenesis.  相似文献   

3.
To infer the phylogeny of both the host and the endosymbiont of Peridinium quinquecorne Abé, the small subunit (SSU) ribosomal DNA (rDNA) from the host and two genes of endosymbiont origin (plastid‐encoded rbcL and nuclear‐encoded SSU rDNA) were determined. The phylogenetic analysis of the host revealed that the marine dinoflagellate P. quinquecorne formed a clade with other diatom‐harbouring dinoflagellates, including Kryptoperidinium foliaceum (Stein) Lindeman, Durinskia baltica (Levander) Carty et Cox and Galeidinium rugatum Tamura et Horiguchi, indicating a single endosymbiotic event for this lineage. Phylogenetic analyses of the endosymbiont in these organisms revealed that the endosymbiont of P. quinquecorne formed a clade with a centric diatom (SSU data indicated it to be closely related to Chaetoceros), whereas the endosymbionts of other three dinoflagellates formed a clade with a pennate diatom. The discrepancy between the host and the endosymbiont phylogenies suggests a secondary replacement of the endosymbiont from a pennate to a centric diatom in P. quinquecorne.  相似文献   

4.
Mitochondria and plastids originated through endosymbiosis, and subsequently became reduced and integrated with the host in similar ways. Plastids spread between lineages through further secondary or even tertiary endosymbioses, but mitochondria appear to have originated once and have not spread between lineages. Mitochondria are also generally lost in secondary and tertiary endosymbionts, with the single exception of the diatom tertiary endosymbiont of dinoflagellates like Kryptoperidinium foliaceum, where both host and endosymbiont are reported to contain mitochondria. Here we describe the first mitochondrial genes from this system: cytochrome c oxidase 1 (cox1), cytochrome oxidase 3 (cox3), and cytochrome b (cob). Phylogenetic analyses demonstrated that all characterized genes were derived from the pennate diatom endosymbiont, and not the host. We also demonstrated that all three genes are expressed, that cox1 contains spliced group II introns, and that cob and cox3 form an operon, all like their diatom relatives. The endosymbiont mitochondria not only retain a genome, but also express their genes, and are therefore likely involved in electron transport. Ultrastructural examination confirmed the endosymbiont mitochondria retain normal tubular cristae. Overall, these data suggest the endosymbiont mitochondria have not reduced at the genomic or functional level.  相似文献   

5.

Background  

Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont.  相似文献   

6.
The dinoflagellate Kryptoperidinium foliaceum has replaced its ancestral peridinin-containing plastid with a fucoxanthin-containing diatom plastid via tertiary endosymbiosis. The diatom endosymbiont of K. foliaceum is much less reduced than well-studied endosymbiotic intermediates, such as cryptophytes and chlorarachniophytes, where relict nuclear genomes are retained in secondary endosymbionts. The K. foliaceum endosymbiont retains a prominent nucleus, multiple four-membrane plastids, and mitochondria, all within a relatively large volume of cytoplasm that is separated from the host cytoplasm by a single membrane. Here we report the first protein-coding gene sequences from the K. foliaceum endosymbiont and host nuclear genomes. We have characterised genes for nucleus-encoded cytosolic proteins, actin (from endosymbiont), alpha-tubulin (from both), beta-tubulin (from host), and HSP90 (from both), in addition to homologues from pennate diatoms Nitzschia thermalis and Phaeodactylum tricornutum. Phylogenetic reconstruction shows that the actin is diatom-derived, the beta-tubulin dinoflagellate-derived, while both diatom- and dinoflagellate-derived alpha-tubulin and HSP90 genes were found. The base composition biases of these genes co-varied with their phylogenetic position, suggesting that the genes still reside in their respective genomes. The presence of these genes implies they are still functional and more generally indicates that the endosymbiont is less genetically reduced than those of cryptophytes or chlorarachniophytes, raising the interesting question of whether any genes have transferred between the two nuclear genomes.  相似文献   

7.
Summary The freshwater dinoflagellateGymnodinium acidotum is known to harbor a cryptomonad endosymbiont whose chloroplasts give the organism its blue-green coloration. Every cell examined from a wild population possessed chloroplasts, mitochondria, and other organelles which are of endosymbiotic origin. Transmission electron microscopy and fluorescence microscopy revealed that only 33% of these cells possessed the nucleus of the endosymbiont. The lack of a cryptomonad nucleus in some cells did not appear to affect the cells' ability to photosynthesize or move in response to varying levels of illumination. This represents the first report of a host/endosymbiont relationship in which a significant number of individuals from a given population lack a major endosymbiont organelle.  相似文献   

8.
Hatena arenicola (Katablepharidophycota) is a single-celled eukaryote that temporarily possesses a chlorophyte alga of the genus Nephroselmis as an intracellular symbiont. In the present study, we investigated the molecular diversity of the endosymbiont Nephroselmis in a natural population of the host H. arenicola. We sequenced the host’s 18S rRNA gene and the endosymbiont’s plastid-encoded 16S rRNA gene. The results indicated that almost identical strains of the host harbored at least three distinct strains of the algal endosymbiont affiliated to the clade Nephroselmis rotunda. This finding supports our previous hypothesis that H. arenicola and its symbiotic alga are in an early stage of secondary endosymbiosis.  相似文献   

9.
Endosymbiosis and evolution of the plant cell   总被引:12,自引:0,他引:12  
The bacterial origins of plastid division and protein import by plastids are beginning to emerge - thanks largely to the availability of a total genome sequence for a cyanobacterium. Despite existing for hundreds of millions of years within the plant cell host, the chloroplast endosymbiont retains clear hallmarks of its bacterial ancestry. Plastid division relies on proteins that are also responsible for bacterial division, although may of the genes for these proteins have been confiscated by the host. Plastid protein import on the other hand relies on proteins that seem to have functioned originally as exporters but that have now been persuaded to operate in the reverse direction to traffic proteins from the host cell into the endosymbiont.  相似文献   

10.
Maekawa K  Kon M  Matsumoto T  Araya K  Lo N 《Zoological science》2005,22(10):1061-1067
Cockroaches have endosymbiotic bacteria in their fat bodies. Recent molecular phylogenetic analyses on both hosts and endosymbionts have revealed that co-evolution has occurred throughout the history of cockroaches and termites. Co-cladogenesis was also shown among closely related taxa (woodroach genus Cryptocercus; Cryptocercidae), and thus endosymbiont data are likely to be useful for biogeographical analyses. To test the possibility of co-cladogenesis among inter-and intraspecific taxa, as well as the utility of endosymbiont data for inferring biogeographical scenarios, we analyzed rRNA genes of endosymbionts of Japanese and Taiwanese Panesthiinae (Salganea and Panesthia; Blaberidae), on which phylogenetic analyses previously had been performed based on the mitochondrial genes. Statistical analyses on the topologies inferred from both endosymbiont and host mitochondria genes showed that co-cladogenesis has occurred. The endosymbiont sequences examined appear to have evolved in a clock-like manner, and their rate of evolution based on the host fossil data showed a major difference in the time of invasion of the two Japanese genera, that is congruent with the recent analyses of their mitochondrial genes.  相似文献   

11.
12.
Accumulating data suggest that the eukaryotic cell originated from a merger of two prokaryotes, an archaeal host and a bacterial endosymbiont. However, since prokaryotes are unable to perform phagocytosis, the means by which the endosymbiont entered its host is an enigma. We suggest that a predatory or parasitic interaction between prokaryotes provides a reasonable explanation for this conundrum. According to the model presented here, the host in this interaction was an anaerobic archaeon with a periplasm‐like space. The predator was a small (facultative) aerobic α‐proteobacterium, which penetrated and replicated within the host periplasm, and later became the mitochondria. Plausible conditions under which this interaction took place and circumstances that may have led to the contemporary complex eukaryotic cell are discussed.  相似文献   

13.
Plastidic starch synthesis in green algae and plants occurs via ADP‐glucose in likeness to prokaryotes from which plastids have evolved. In contrast, floridean starch synthesis in red algae proceeds via uridine diphosphate‐glucose in semblance to eukaryotic glycogen synthesis and occurs in the cytosol rather than the plastid. Given the monophyletic origin of all plastids, we investigated the origin of the enzymes of the plastid and cytosolic starch synthetic pathways to determine whether their location reflects their origin—either from the cyanobacterial endosymbiont or from the eukaryotic host. We report that, despite the compartmentalization of starch synthesis differing in green and red lineages, all but one of the enzymes of the synthetic pathways shares a common origin. Overall, the pathway of starch synthesis in both lineages represents a chimera of the host and endosymbiont glycogen synthesis pathways. Moreover, host‐derived proteins function in the plastid in green algae, whereas endosymbiont‐derived proteins function in the cytosol in red algae. This complexity demonstrates the impacts of integrating pathways of host with those of both primary and secondary endosymbionts during plastid evolution.  相似文献   

14.
Most genome sequencing projects using intracellular bacteria face difficulties in obtaining sufficient bacterial DNA free of host contamination. We have developed a simple and rapid protocol to isolate endosymbiont DNA virtually free from fly and mosquito host DNA. We purified DNA from six Wolbachia strains in preparation for genome sequencing using this method, and achieved up to 97% pure Wolbachia sequence, even after using frozen insects. This is a significant improvement for future Wolbachia and other endosymbiont genome projects.  相似文献   

15.
Three Gram-negative, rod-shaped bacteria that were found intracellularly in two environmental and one clinical Acanthamoeba sp. isolates were analysed. Two endocytobionts showing a parasitic behaviour were propagated successfully outside their amoebal host cells and were identified subsequently by comparative 16S rRNA sequence analysis as being most closely affiliated with Flavobacterium succinicans (99% 16S rRNA sequence similarity) or Flavobacterium johnsoniae (98% 16S rRNA sequence similarity). One endocytobiont could neither be cultivated outside its original Acanthamoeba host ( Acanthamoeba sp. TUMSJ-321) nor transferred into other amoebae. Electron microscopy revealed that the amoebal trophozoites and cysts were almost completely filled with cells of this endosymbiont which are surrounded by a host-derived membrane. According to 16S rRNA sequence analysis, this endosymbiont could also be assigned to the Cytophaga – Flavobacterium – Bacteroides (CFB) phylum, but was not closely affiliated to any recognized species within this phylogenetic group (less than 82% 16S rRNA sequence similarity). Identity and intracellular localization of this endosymbiont were confirmed by application of a specific fluorescently labelled 16S rRNA-targeted probe. Based on these findings, we propose classification of this obligate Acanthamoeba endosymbiont as ' Candidatus Amoebophilus asiaticus'. Comparative 18S rRNA sequence analysis of the host of ' Candidatus Amoebophilus asiaticus' revealed its membership with Acanthamoeba 18S rDNA sequence type T4 that comprises the majority of all Acanthamoeba isolates.  相似文献   

16.
Many obligately intracellular symbionts exhibit a characteristic set of genetic changes that include an increase in substitution rates, loss of many genes, and apparent destabilization of many proteins and structural RNAs. Authors have suggested that these changes are due to increased mutation rates, or, more commonly, decreased effective population size due to population bottlenecks at the symbiont or, perhaps, host level. I propose that the increase in substitution rates and accumulation of deleterious mutations is a consequence of the population structure imposed on the endosymbionts by strict host association, loss of horizontal transmission and potentially conflicting levels of selection. I analyze a population genetic model of endosymbiont evolution, and demonstrate that substitution rates will increase, and the effect of those substitutions on endosymbiont fitness will become more deleterious as horizontal transmission among hosts decreases. Additionally, I find that there is a critical level of horizontal transmission below which natural selection cannot effectively purge deleterious mutations, leading to an expected loss of fitness over time. This critical level varies across loci with the degree of correlation between host and endosymbiont fitness, and may help explain differential retention and loss of certain genes.  相似文献   

17.
Cospeciation of psyllids and their primary prokaryotic endosymbionts   总被引:3,自引:0,他引:3  
Psyllids are plant sap-feeding insects that harbor prokaryotic endosymbionts in specialized cells within the body cavity. Four-kilobase DNA fragments containing 16S and 23S ribosomal DNA (rDNA) were amplified from the primary (P) endosymbiont of 32 species of psyllids representing three psyllid families and eight subfamilies. In addition, 0.54-kb fragments of the psyllid nuclear gene wingless were also amplified from 26 species. Phylogenetic trees derived from 16S-23S rDNA and from the host wingless gene are very similar, and tests of compatibility of the data sets show no significant conflict between host and endosymbiont phylogenies. This result is consistent with a single infection of a shared psyllid ancestor and subsequent cospeciation of the host and the endosymbiont. In addition, the phylogenies based on DNA sequences generally agreed with psyllid taxonomy based on morphology. The 3' end of the 16S rDNA of the P endosymbionts differs from that of other members of the domain Bacteria in the lack of a sequence complementary to the mRNA ribosome binding site. The rate of sequence change in the 16S-23S rDNA of the psyllid P endosymbiont was considerably higher than that of other bacteria, including other fast-evolving insect endosymbionts. The lineage consisting of the P endosymbionts of psyllids was given the designation Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.).  相似文献   

18.
Individual traits vary among and within populations, and the co-occurrence of different endosymbiont species within a host may take place under varying endosymbiont loads in each individual host. This makes the recognition of the potential impact of such endosymbiont associations in insect species difficult, particularly in insect pest species. The maize weevil, Sitophilus zeamais Motsch. (Coleoptera: Curculionidae), a key pest species of stored cereal grains, exhibits associations with two endosymbiotic bacteria: the obligatory endosymbiont SZPE (“Sitophilus zeamais Primary Endosymbiont”) and the facultative endosymbiont Wolbachia. The impact of the lack of SZPE in maize weevil physiology is the impairment of nutrient acquisition and energy metabolism, while Wolbachia is an important factor in reproductive incompatibility. However, the role of endosymbiont load and co-occurrence in insect behavior, grain consumption, body mass and subsequent reproductive factors has not yet been explored. Here we report on the impacts of co-occurrence and varying endosymbiont loads achieved via thermal treatment and antibiotic provision via ingested water in the maize weevil. SZPE exhibited strong effects on respiration rate, grain consumption and weevil body mass, with observed effects on weevil behavior, particularly flight activity, and potential consequences for the management of this pest species. Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect. SZPE suppression delayed weevil emergence, which reduced the insect population growth rate, and the thermal inactivation of both symbionts prevented insect reproduction. Such findings are likely important for strain divergences reported in the maize weevil and their control, aspects still deserving future attention.  相似文献   

19.
Danne JC  Gornik SG  Waller RF 《Protist》2012,163(1):76-90
Most photosynthetic dinoflagellates harbour a red alga-derived secondary plastid. In the dinoflagellate Karlodinium micrum, this plastid was replaced by a subsequent endosymbiosis, resulting in a tertiary plastid derived from a haptophyte. Evolution of endosymbionts entails substantial relocation of endosymbiont genes to the host nucleus: a process called endosymbiotic gene transfer (EGT). In K. micrum, numerous plastid genes from the haptophyte nucleus are found in the host nucleus, providing evidence for EGT in this system. In other cases of endosymbiosis, notably ancient primary endosymbiotic events, EGT has been inferred to contribute to remodeling of other cell functions by expression of proteins in compartments other than the endosymbiont from which they derived. K. micrum provides a more recently derived endosymbiotic system to test for evidence of EGT and gain of function in non-plastid compartments. In this study, we test for gain of haptophyte-derived proteins for mitochondrial function in K. micrum. Using molecular phylogenies we have analysed whether nucleus-encoded mitochondrial proteins were inherited by EGT from the haptophyte endosymbiont, or vertically inherited from the dinoflagellate host lineage. From this dataset we found no evidence of haptophyte-derived mitochondrial genes, and the only cases of non-vertical inheritance were genes derived from lateral gene transfer events.  相似文献   

20.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号