首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
詹月平  周敏  贺张  陈中正  段毕升  胡好远  肖晖 《生态学报》2013,33(11):3318-3323
寄主大小模型认为寄生蜂后代性比与寄主大小相关,寄生蜂倾向于在大寄主上产出更多雌性后代,在小寄主上产出更多雄性后代.探讨了以家蝇蛹为寄主时,蝇蛹佣小蜂后代产量和性比变化;单次寄生情况下,寄主大小及寄生顺序对寄生蜂后代性比等影响.结果表明,蝇蛹佣小蜂的产卵期为(8.93±3.34)d,单头雌蜂能产雌性后代(34.11±16.34)头和雄性后代(11.04±8.87)头,且雄性百分比为0.24±0.11.随成蜂日龄的增大,寄生蜂产生雄性后代的比率显著增加.蝇蛹佣小蜂在寄生家蝇蛹时,会优先选择寄生个体较大的蛹;在单次寄生的情况下,蝇蛹佣小蜂倾向于在较大的家蝇蛹内产出更多的雌性后代.  相似文献   

2.
M. Kenis 《BioControl》1996,41(2):217-224
Five factors known to affect the sex ratio (% of males) in parasitic Hymenoptera were investigated forCoeloides sordidator, a parasitoid ofPissodes weevils. The host age, the age of ovipositing females, and the host of origin had a significant impact on the sex ratio of offspring. In contrast, the number of ovipositing females had an insignificant effect on sex ratio whereas the effect of host density could not be clearly defined. The sex ratio decreased with host age, probably because, like many other hymenopteran parasitoids, females tend to lay male eggs on small hosts and female eggs on larger hosts in order to maximize the size and fitness of their female offspring. The sex ratio also varied with the age of the mother, younger females laying more male eggs and older females more female eggs. The host of origin also had an influence on sex ratio. The strain fromPissodes castaneus was significantly more male-biased than the strain fromP. validirostris, which corroborates previous observations made on field populations  相似文献   

3.
Superparasitism is a widespread phenomenon. Having accepted superparasitism, mated female parasitoids must decide on the sex of each egg they subsequently lay into the same host. Theory predicts that this decision is either based on host quality, when more male eggs are laid in hosts that are already parasitized because they are perceived to be of poorer quality; or more eggs are laid of the sex that is most likely to be a strong larval competitor, i.e. generally females.Anastatus disparis is a facultative endoparasitic egg parasitoid. We used ‘artificial’ hosts to explore outcomes of decision making by A. disparis during superparasitism under a manipulated absence of larval competition. When only one egg was laid it was always female. As the number of eggs laid increased, so more of them were male. This supports the theory that oviposition decisions are based on host quality; more male eggs were laid in hosts that were already parasitized and thus of poorer quality.In a second experiment, eggs were exposed to parasitoids for different periods of time. Half the eggs were dissected to determine the number of parasitoid eggs that had been laid. The remaining eggs were incubated and the number and sex of offspring that ultimately emerged, following larval competition, were recorded. Under superparasitism conditions fierce larval competition ensued; only one offspring survived and they were predominantly female.In conclusion, oviposition decisions by female A. disparis accepting self-superparasitism were made based on host quality.  相似文献   

4.
Female wasps of the solitary egg parasitoid Gryon japonicum (Hymenoptera: Platygastridae) allocate male and female offspring in a particular sequence to successive hosts. Male eggs are typically laid in the second host, and the sex allocation sequence is reset after a certain period of time. The present study aimed to examine the underlying mechanism to hold information and reset the sequence by using eggs of Riptortus pedestris (Heteroptera: Alydidae) as hosts. After completion of initial oviposition, a female wasp was treated by cold anesthesia for 1 h, exposure to a parasitized host for 3 h, or being kept at 15°C in darkness for 24 h, and then presented with three host eggs. Cold‐anesthetized females did not reset the sex allocation sequence, indicating that cold anesthesia did not block the mechanism of holding information about oviposition order. Frequent encounters with parasitized hosts were also insufficient to reset the sequence. However, being kept in cool, dark conditions significantly affected resetting, suggesting that low temperature lengthened the time required to reset the sequence. This implies that it is probable that the mechanism to hold information and reset sex allocation sequence in G. japonicum involves metabolism.  相似文献   

5.
1. In many gregarious or quasi‐gregarious parasitoids that experience local mate competition, precise sex ratios with low variance are observed. Precise sex ratios can be achieved by laying male and female eggs in non‐random sequences. 2. Developmental mortality can also alter sex ratios of emerging offspring, and subsequently influence sex ratio optima. 3. The present study investigates sex allocation by Metaphycus flavus Howard, M. luteolus Timberlake, and M. angustifrons Compere (Hymenoptera: Encyrtidae), endoparasitoids of soft scale insects, in the laboratory. 4. All three Metaphycus species had precise secondary sex ratios when parasitising brown soft scale, Coccus hesperidum, L. in the laboratory. Moreover, we documented that all three species lay fertilised (= female) eggs first followed by unfertilised (= male) eggs at the end of the oviposition bout. However, there were significant differences in sex allocation sequences among species. 5. Mortality rates of eggs allocated within an oviposition bout also varied considerably, indicating that there is a significant interspecific variation in sequence position‐specific mortality. 6. Using a stochastic Monte Carlo simulation approach, we provide evidence that the incidence of all‐female broods in these parasitoid wasps appears mainly due to developmental mortality and not due to decisions by the ovipositing female. In two species the prevalence of all‐female broods was independent of clutch size, contrary to what is expected from theory. The influence of mortality on optimal sex allocation in these parasitoids is discussed.  相似文献   

6.
Ichneumonoidae parasitoids have been well described for their regulatory effects on host physiology which are usually associated with the activity of polydnaviruses (PDVs) or viruslike-particles (VLPs) injected by the female wasps at oviposition. Among them, parasitoids of the braconid families display specific characteristics like the required activity of secretions from the maternal venom glands or of teratocytes from embryological origin. However, none of these features were observed in two braconid species of the Asobara genus parasitizing Drosophila hosts. In the absence of PDVs and VLPs, the two species A. tabida and A. citri seem to have developed unique strategies to avoid immunity defenses and to succeed in their Drosophila larval hosts. The aim of this study is to report on the complex relationships of braconid parasitoids with their hosts and to present some of the insights from studying Drosophila parasitoids.  相似文献   

7.
A sex ratio theory of gregarious parasitoids   总被引:3,自引:0,他引:3  
Summary A mathematical model is constructed to explain a density-dependent increase in the progeny sex ratios of gregarious parasitoids. In the model we considered non-cooperative game between females concerned with their own inclusive fitness. Equilibrium progeny sex ratios of the first and second females ovipositing on the same host are expressed in terms of the probability of double parasitism (p), the ratio of a male to a female in contribution to resource competition (α), the clutch size ratio between the two females (β), the crowding effect on female reproductive success (γ), and the inbreeding coefficient (f). Major predictions from the model are: 1) the progeny sex ratios of both the first and second females increase withp, 2) as β becomes smaller, the progeny sex ratios of the first females decrease, while those of the second females dramatically increases, 3) when a host is attacked by at most two wasps, the sex ratio of the total number of eggs laid on the host does not exceed 0.25. The effects of α and preferential death by female progeny in doubly parasitized hosts are considered as factors responsible for an excess number of males at emergence. Some possible modes of density-dependent increase in the sex ratios of the overall progeny populations is also discussed on the basis of the present model.  相似文献   

8.
Abstract. 1. The ovipositional and egg allocation behaviour of individual females of Aphytis melinus DeBach and A.lingnunensis Compere were compared.
2. Both Aphytis species exhibit the same behavioural sequence during oviposition.
3. Aphytis melinus laid most of its female eggs on the dorsum of a scale-insect beneath its cover, and most of its male eggs under the scale-insect's body. Aphytis lingnanensis also oviposited both dorsally and ventrally on scale-insect hosts, but female and male progeny arose with equal frequency from eggs laid in both locations.
4. Both A.melinus and A. lingnanensis are facultatively gregarious parasitoids. The degree of gregariousness depends on host size, i.e. the larger the host, the more the Iikelihood that several eggs will be deposited at each visit by the parasitoid.
5. When two eggs were laid during the same host visit, both A.melinus and A.lingnanensis laid one female and one male egg more often than would be expected under an assumption of random allocation of sexes.
6. Because A.melinus successfulIy utilize smaller hosts than A.lingnanensis to produce progeny, these parasitoids should not be considered ecological homo-logues, as suggested by DeBach & Sundby (1963).  相似文献   

9.
Abstract. 1. Encarsia pergandiella Howard females develop as primary parasitoids on immature whiteflies, and males develop as secondary parasitoids on females of their own or a related species. The hypothesis that the sex ratio reflects the relative abundance of the two host types was tested in the laboratory using petri dish arenas with varying proportions of early fourth instar greenhouse whitefly (Trialeurodes vaporariorum (West.)) (primary hosts) and pupal female E.pergandiella (secondary hosts). Egg distribution was analysed with respect to sex ratio, super-parasitism and host discrimination.
2. The proportion of primary and secondary hosts parasitized in each treatment reflected the relative availability of each host type. Thus females presented with 75% primary hosts laid more female eggs than male. However, in all treatments, a greater proportion of secondary hosts were parasitized than would be expected from the proportion of secondary hosts available. This indicates that more male eggs were laid than expected.
3. More secondary hosts than primary hosts were superparasitized.
4. Host discrimination analysis using a new test statistic showed that females generally laid eggs at random with regard to previous parasitism of primary or secondary hosts. However, females in one treatment with 50% of each host type appeared to preferentially oviposit in secondary hosts which did not contain any eggs.  相似文献   

10.
In insects, mating often occurs after natal dispersal, and hence relies on a coevolved combination of sexual communication and movement allowing mate encounter. Volatile sex pheromones are widespread, generally emitted by females and triggering in‐flight orientation of conspecific males. In parasitoid wasps, unmated females can start laying unfertilized eggs via parthenogenesis so that host patches could serve as sites of rendezvous for mating. Males could therefore use cues associated with host patches to focus their search on females that have successfully found oviposition sites. We hypothesized that in parasitoids exploiting herbivorous hosts, sex pheromones, and herbivore‐induced plant volatiles (HIPV) should act in synergy, triggering male orientation toward ovipositing females. We tested this hypothesis with the aphid parasitoid Lysiphlebus testaceipes. Results from both field and laboratory experiments show that males are strongly attracted to virgin females, but that volatiles from aphid‐infested plants have no effect on male orientation, neither has a cue, nor in interaction with the female sex pheromone. The absence of synergy between sex pheromones and HIPV contrasts with results on other species and raises interesting questions on mating systems and sexual selection in parasitoid wasps.  相似文献   

11.
Abstract.
  • 1 Female eggs of Coccophagus atratus are deposited within the haemolymph of coccoid scale insects. Male eggs are deposited on to late larval and prepupal stages of parasitoids of scale insects, including conspecifics.
  • 2 When presented with either one host type or a combination of both host types, female C.atratus deposit all their available eggs, assigning the appropriate sex egg to each host encountered. Brood sizes are not adjusted for different combinations of hosts.
  • 3 Behavioural observations show that females do not move away from patches of hosts until all their eggs are laid, regardless of the host type.
  • 4 Brood sex ratios varied with changes in the relative availability of hosts for males and hosts for females. When both host-types were present in equal numbers, male biased sex ratios resulted (mean ±SEM =0.71 ± 0.009) and when 70% of hosts provided were suitable for female eggs, mostly female-biased sex ratios resulted (mean ± SEM = 0.37±0.01).
  • 5 Our results do not fit predictions based on the assumption that a sex ratio of 0.5 should be expected in C.atratus. Observed sex ratios indicate that the unusual life histories of these parasitoids need to be taken into account in explanations of their sex ratios.
  相似文献   

12.
1. The evolution of host resistance to parasitoid attack will be constrained by two factors: the costs of the ability to defend against attack, and the costs of surviving actual attack. These factors have been investigated using Drosophila melanogaster and its parasitoids as a model system. The costs of defensive ability are expressed as a trade-off with larval competitive ability, whereas the costs of actual defence are exhibited in terms of reduced adult fecundity and size.
2. The costs of actual defence may be ameliorated by the host-choice decisions made by Pachycrepoideus vindemiae , a pupal parasitoid. If larvae that have successfully encapsulated a parasitoid develop into poorer quality hosts, then these may be rejected by ovipositing pupal parasitoids.
3. Pupae developing from larvae that have encapsulated the parasitoid Asobara tabida are smaller and have relatively thinner puparia. Thinner puparia are likely to be associated with a reduction in mechanical strength and possibly with a decrease in desiccation tolerance.
4. Pachycrepoideus vindemiae that develop in capsule-bearing pupae are smaller than those that emerge from previously unattacked hosts. This supports the prediction that ovipositing female P. vindemiae should avoid attacking capsule-bearing hosts. However, in choice experiments with 1-day-old pupae, P. vindemiae females oviposited preferentially in hosts containing a capsule, whereas there was no preference found with 4-day-old hosts. This appears to be a maladaptive host choice decision, as the female pupal parasitoids are preferentially attacking hosts that will result in a reduction of their own fitness.
5. The increased likelihood of attack by a pupal parasitoid is another cost of actual defence against larval parasitoid attack.  相似文献   

13.
Female parasitoids are expected to avoid superparasitism (ovipositing in and/or on parasitized hosts) when unparasitized hosts are available. However, when the supply of unparasitized hosts is restricted, they are expected to self‐ as well as conspecifically superparasitize. One of the cues of a reduced availability of unparasitized hosts is the presence of a conspecific. Moreover, if the focal species can perform infanticide, after encountering a conspecific female, the females are expected to kill eggs existing in and/or on hosts when superparasitizing, because the eggs are more likely to be laid by others. In this study we investigated whether females of an infanticidal semisolitary parasitoid, Echthrodelphax fairchildii, increase their frequencies of superparasitism and infanticide after encountering a conspecific female. Echthrodelphax fairchildii females are capable of discriminating between self‐ and conspecific superparasitism until up to 0.75 h after the first egg was laid (self‐superparasitism frequency < conspecific superparasitism frequency). As expected, the female parasitoids were more likely to perform self‐ and conspecific superparasitism after they had encountered a conspecific. In particular, the self‐superparasitism frequency increased highly within a short period after the first oviposition, so that no difference between the self‐ and conspecific superparasitism frequencies was found. In contrast, the infanticidal‐probing frequency remained extremely low, irrespective of whether or not the female parasitoids had encountered a conspecific. Moreover, when superparasitizing, females usually laid female eggs. Possible causes for the low frequency of infanticidal probing and the female‐biased sex ratio are discussed.  相似文献   

14.
Copidosoma sp. is a polyembryonic encyrtid wasp which parasitizes isolated hosts. Most broods of this wasp are unisexual, but some contain both sexes and the secondary sex ratio of these is usually highly female biased. The overall population secondary sex ratio is female biased. Walter and Clarke (1992) argue that because the majority of individuals must mate outside the natal patch, the bias in the population secondary sex ratio contradicts predictions made by Hamilton's (1967) theory of local mate competition (LMC). We suggest that the primary sex ratio is unbiased and that Walter and Clarke's results do not cast doubt on LMC. Instead these results imply that ovipositing females make a combined clutch size and sex ratio decision influencing whether individuals developing from a particular brood will outbreed or largely inbreed; for each case the predictions of LMC theory are not violated. If this interpretation is correct, what is of interest is the basis on which this decision is made rather than the population secondary sex ratio. We show that host encounter rate influences the proportions of mixed and single sex broods laid by Copidosoma floridanum, a related polyembryonic parasitoid. Among single-sex broods the primary sex ratio is female biased, but our results are in agreement with LMC theory since offspring developing from these broods will probably mate with siblings from adjacent hosts. We consider the egg load of females to be of major influence on oviposition behaviour, and that the mating structure of parasitoid offspring, potentially differential costs of male and female broods and the natural distributions of hosts both at oviposition and eclosion, require further study.  相似文献   

15.
Superparasitism in solitary parasitoids results in fatal competition between the immature parasitoids, and consequently only one individual can emerge. In the semisoli- tary ovicidal parasitoid Echthrodelphaxfairchildii (Hymenoptera: Dryinidae), 2 adults can emerge under superparasitism with a short interval (〈24 h) between the first and second ovipositions. We determined the female parasitoid's behavioral responses under self- and conspecific superparasitism bouts with first-to-second oviposition intervals of 〈2 h. The self- and conspecific superparasitizing frequencies increased up to an oviposition interval of 0.75 h, with the former remaining lower than the latter, particularly for oviposition intervals of _〈0.25 h, suggesting the existence of self-/conspecific discrimination. The superparasitizing frequency plateaued for oviposition intervals of _〉0.75 h, with no dif- ference between self- and conspecific superparasitism. The ovicidal-probing frequency did not differ under self- and conspecific superparasitism, and was usually 〈20%. The females exhibited no preference for the oviposition side (i.e., ovipositing on the side with or without the first progeny) and almost always laid female eggs for any oviposition in- terval under self- and conspecific superparasitism. The sex ratio was not affected by the type of superparasitism, oviposition sides, or the occurrence of ovicidal probing. These observed results about the oviposition side, ovicidal probing, and sex ratios differed from the predictions obtained assuming that the females behave optimally. Possible reasons for the discrepancies are discussed: likely candidates include the high cost of selecting oviposition sides and ovicidal probing, and, for the sex ratio, the low frequency of encountering suitable hosts before superparasitism bouts.  相似文献   

16.
Host-size related feeding and oviposition behaviour, and allocation of progeny sex by Anisopteromalus calandrae (Howard) were tested on Sitophilus oryzae L. The parasitoid showed a host-size-dependent partition of feeding and oviposition behaviour, preferring small hosts for feeding, but large hosts for oviposition. Neither the mutual interference nor the host density showed any effect on the behaviour of the parasitoid. Allocation of progeny sex by the female parasitoid appeared to be based more likely on absolute than on relative host size encountered. A model for the progeny sex ratio was constructed based on: (1) ovipositional preference of the parasitoid on large hosts; (2) feeding preferentially on small hosts; and (3) host-size-related regulation of progeny sex ratio. The progeny sex ratio of the parasitoid predicted by the model was in close agreement with the observed value.  相似文献   

17.
1. The reproductive fitness of a parasitoid depends on its mating and ovipositing success. Virgin haplodiploid females can reproduce, but produce only males, and may diminish fitness by producing more male offspring than required. Therefore, females must decide on whether to mate or oviposit first. 2. This study was conducted to assess the mating versus ovipositing decision and its impact on the reproductive fitness of Diaeretiella rapae (Hymenoptera: Aphididae), an endoparasitoid of the cabbage aphid Brevicoryne brassicae (Hemiptera: Aphididae). 3. When newly emerged females were given a choice between mating and ovipositing, about 62% of D. rapae females preferred to mate before ovipositing. Those females who oviposited before mating parasitised only 10% of the available aphids. After mating, females superparasitised their hosts with fertilised eggs, which resulted in a highly female‐biased sex ratio in the offspring. 4. Mating success was very high (91%) in the presence of hosts (cabbage aphid nymphs) compared with that in the absence of aphids. However, mating success was not influenced by the quality (size) of the hosts present in the mating arena, despite a parasitoid preference for larger hosts during oviposition. The time between pairing and mating was also shorter in the presence of host aphids. The mean number of aphids parasitised and the parasitism rate were significantly greater after mating.  相似文献   

18.
A dynamic optimization model is presented for the decision to host feed or oviposit on hosts by female parasitoids. Optimal host utilization decisions are compared between two host types with different fitness payoffs for oviposition. The model predicts that hosts of higher fitness value should always be used for oviposition unless the egg load approaches zero. This general prediction is not influenced by levels of host availability or metabolic reserves, the age of the parasitoid, or the magnitude of the fitness difference. An egg-load threshold is predicted above which lower value hosts should be used for oviposition and below which they are used for host feeding. The position of this egg-load threshold is higher when the difference in fitness between host types is larger. The threshold is also higher when overall host availability is high or metabolic reserves for the production of new eggs are low. The threshold for oviposition on low-value hosts decreases to zero near the end of the parasitoid’s life. Under conditions where high-value hosts are rarely encountered compared to low-value hosts, the model predicts that lower value hosts should be accepted for oviposition at a lower egg-load threshold.  相似文献   

19.
Adaptiveness of sex ratio control by the solitary parasitoid wasp Itoplectis naranyae (Hymenoptera: Ichneumonidae) in response to host size was studied, by examining whether differential effects of host size on the fitness of resulting wasps are to be found between males and females. The offspring sex ratio (male ratio) decreased with increasing host size. Larger hosts yielded larger wasps. Male larvae were less efficient in consuming larger hosts than female larvae. No significant interaction in development time was found between parasitoid sex and host size. Larger female wasps lived longer than smaller females, while longevity of male wasps did not increase with increasing wasp size. Smaller males were able to mate either with small or with large females, while larger males failed to mate with small females. Larger female wasps had a greater number of ovarioles and mature eggs at any one time than smaller females, although the number of eggs produced per host-feeding was not influenced by female wasps. Thus, the differential effect of host size on the fitness of males and females exists in I. naranyae. The basic assumption of the host-size model was therefore satisfied, demonstrating that sex ratio control by I. naranyae in response to host size is adaptive.  相似文献   

20.
夏诗洋  孟玲  李保平 《昆虫学报》2012,55(9):1069-1074
在寄生蜂行为生态学研究中, 通常将寄主体型大小作为寄主品质的主要性状来探究寄生蜂的搜寻行为机理, 而忽略寄生蜂体型大小的意义。为揭示聚寄生蜂雌蜂体型大小对其产卵决策的影响, 在严格控制寄主菜粉蝶Pieris rapae蛹体型大小(体重)的情况下, 于室内观察了不同体型大小的蝶蛹金小蜂Pteromalus puparum雌蜂的产卵行为, 并调查了子代蜂数量(窝卵数)、 性比和体型大小的变化。结果表明: 雌蜂在寄主上的驻留时间随其自身体型增大而缩短, 但随寄主体重增大而延长。窝卵数和余卵量受到雌蜂体型大小的显著影响, 均随雌蜂体型增大而显著增加(P<0.05); 但子代蜂性比不受雌蜂体型大小的显著影响 (P>0.05)。子代雌、 雄性体型大小均与雌蜂体型大小无关, 但子代雌蜂体型随寄主体重增大而增大。结果证实, 雌性蝶蛹金小蜂体型大小影响其部分产卵决策。因此, 在建立聚寄生蜂产卵决策模型中应考虑雌蜂体型大小这一重要变量因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号