首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Inhibition of brain protein synthesis following intravenous administration of d-lysergic acid diethylamide (LSD) is accompanied by generation of a translational inhibitor protein in the postribosomal supernatant of cerebral hemispheres. Addition of an enriched preparation of this factor to a brain cell-free translation system resulted in a selective reduction in the level of phosphorylation of proteins of molecular weight 55K, 41K, and 25K. A similar set of changes was also observed in a brain cell-free system prepared 1 hr subsequent to drug injection. The brain inhibitor reduced the translational capacity of a messenger RNA-dependent reticulocyte lysate programmed with brain polysomes isolated from saline-injected animals however little effect was apparent when polysomes were prepared from LSD-treated animals. The translational inhibitor did not affect the spectrum of translation products from either set of polysomes.Abbreviations used HRI heme-regulated inhibitor - K 1000 Molecular weight - LSD d-lysergic acid diethylamide - PMS postmitochondrial supernatant - TCA trichloroacetic acid  相似文献   

2.
An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of D-lysergic acid diethylamide (LSD) to rabbits resulted in a lesion at the initiation stage of brain protein synthesis. Three inhibitors of initiation, edeine, poly(I), and aurintricarboxylic acid were used to demonstrate a reduction in initiation-dependent amino acid incorporation in the brain cell-free system. One hour after LSD injection, there was also a measurable decrease in the formation of 40S and 80S initiation complexes in vitro, using either [35S]methionine or [35S]Met-tRNAf. Analysis of the methionine pool size after LSD administration indicated there was no change in methionine levels. Analysis of the formation of initiation complexes in the brain cell-free protein synthesis system prepared 6 h after LSD administration indicated that there was a return to control levels at this time. The effects of LSD on steps in the initiation process are thus reversible.  相似文献   

3.
The high salt wash of rabbit reticulocyte ribosomes contains two separate factors which can partially reverse the inhibition of polypeptide chain initiation that results when reticulocyte lysate is incubated in the absence of hemin. These two factors, termed initiation factor (IF) 1 and IF-2, have been separated from each other by chromatography on diethylaminoethyl cellulose and then further purified on hydroxyapatite. IF-1 forms a GTP-dependent complex with methionyl-tRNAf that is retained on Millipore filters. When these factors are added to a system containing reconstituted, salt-extracted ribosomes, IF-1 promotes the binding of methionyl-tRNAf to the 40 S subunit, whereas IF-2 promotes the formation of 80 S initiation complexes from 40 S complexes. Addition of small amounts of one factor and a saturating level of the other to the unfractionated lysate and incubation in the absence of hemin produce an additive stimulation of protein synthesis. Each factor can also partially reverse the inhibitory effect of the hemin-controlled translational repressor. The implication of these findings for the mechanism of hemin control of protein synthesis in reticulocyte lysates is discussed.  相似文献   

4.
Fertilization of sea urchin eggs results in a large stimulation of protein synthesis. This increase in protein synthesis is mediated by the mobilization of stored maternal mRNA (mRNPs) into polysomes, but the details of the molecular mechanisms which regulate this process are not well understood. Using a sea urchin egg cell-free translation system, evidence has been obtained which indicates that the capacity to initiate protein synthesis on new mRNAs is limited. Addition of exogenous mRNAs failed to stimulate overall protein synthesis, whereas supplementing the system with a nuclease-treated reticulocyte lysate, an S-100 supernatant fraction, or purified eIF-2 stimulated nearly twofold. In addition, the levels of 43 S preinitiation complexes containing a 40 S ribosomal subunit and methionyl-tRNA were increased at pH 7.4 compared to pH 6.9, or when reticulocyte S-100 was added. However, other experiments showed clearly that mRNA availability may also regulate translation in the sea urchin egg. Sea urchin lysates only stimulated poorly the nuclease-treated reticulocyte lysate system, and the mRNPs in the sea urchin lysate did not bind to reticulocyte 43 S preinitiation complexes. Since purified sea urchin egg mRNA was active in both assays, the bulk of sea urchin mRNA must be masked in the egg, and remain masked in the in vitro assays. Thus, protein synthesis appears to be regulated at both the level of mRNA availability and the activity of components of the translational machinery.  相似文献   

5.
Abstract: Free and membrane-bound polysomes and polyadenylated mRNA isolated from rabbit brain were translated in an mRNA-dependent rabbit reticulocyte lysate system. Electrophoretic analysis of the cell-free translation products demonstrated that although most of the nascent proteins were common to both free and membrane-bound brain polysomes, qualitative and quantitative differences were observed. Compared with the results obtained with purified polyadenylated mRNA, the addition of intact polysomes to the cell-free translation assay was more efficient and produced higher molecular weight products. Analysis of the translation products of free and membrane-bound polysomes revealed the appearance of 74K protein following either LSD administration or hyperthermia induced by elevated temperature treatment. The presence of this 74K protein was verified by analysis of the translation products by two-dimensional gel electrophoresis.  相似文献   

6.
7.
Protamine 1 mRNAs are inactivated by a block to the initiation of translation in early spermatids and are translationally active in late spermatids in mice. To determine whether translation of protamine 1 mRNAs is inhibited by a protein repressor, the translational activity of ribonucleoprotein particles and deproteinized RNAs were compared in the reticulocyte and wheat germ cell-free translation lysates. To isolate RNPs, cytoplasmic extracts of total testes were fractionated by large-pore gel filtration chromatography. Ribonucleoprotein particles in the excluded fractions stimulated synthesis of radiolabeled translation products for protamine 1 about twofold less effectively than deproteinized RNAs in the reticulocyte lysate, but were inactive in the wheat germ lysate. The ability of translationally repressed protamine 1 ribonucleoprotein particles to form initiation complexes with 80S ribosomes in the reticulocyte lysate was also measured. Protamine 1 ribonucleoprotein particles isolated by gel filtration and in unfractionated cytoplasmic extracts of early spermatids were nearly as active in forming initiation complexes as deproteinized mRNAs. The isolation of ribonucleoprotein particles in buffers of varying ionic strength, protease inhibitors, and several other variables had no major effect on the ability of protamine 1 ribonucleoprotein particles to form initiation complexes in the reticulocyte lysate. These results can be explained by artifacts in the isolation or assay of ribonucleoprotein particles or by postulating that protamine 1 mRNAs are inactivated by a mechanism that does not involve protein repressors, such as sequestration. © 1994 Wiley-Liss, Inc.  相似文献   

8.
We have used cell-free translation systems from unfertilized eggs and embryos of the sea urchin Strongylocentrotus purpuratus to analyze the mechanisms limiting protein synthesis in early embryogenesis. Unfertilized egg lysates supplemented with nuclease-treated reticulocyte lysate were stimulated 2-4-fold in incorporation of radioactive amino acid into protein. Thirty-minute zygote lysates supplemented in this way were not stimulated. These results suggested that a component limiting translation in the unfertilized egg lysate was provided by the nuclease-treated lysate and that this component was no longer limiting protein synthesis following fertilization. In view of these results, partially fractionated lysates and individual purified translational components from mammalian cells were tested for stimulation of the unfertilized egg lysate. A 1000000g supernatant devoid of ribosomal subunits also stimulated the unfertilized egg lysate. Thus, the stimulation was not due to the addition of active ribosomal subunits but to soluble elements in the reticulocyte lysate. Of the soluble components tested, only the cap-binding protein complex eIF4F caused a dramatic stimulation of the unfertilized egg lysate (2-3.5-fold). The 30-min zygote lysate was not stimulated by eIF4F or by any of the other components tested, supporting the hypothesis that a block in the translational machinery is removed at fertilization. A rabbit reticulocyte shift assay was used to analyze whether mRNA is limiting in early development. When unfertilized egg lysate was added to the shift assay, there was no shift in radioactivity from 43S to 80S complexes, indicating the unfertilized egg mRNA is not available for translation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A component of the reticulocyte cell membrane was found to inhibit protein synthesis severely in a reticulocyte lysate system. An investigation into the mode of action of the membrane inhibitor revealed the following facts. (1) The binding of the tertiary initiation complex (methionyl-tRNAfMet-Initiation Factor 2-GTP) to the 40S ribosomal subunit was unaffected by the membrane inhibitor. (2) The membrane component did not interfere with the binding of the 40S initiation complex to the AUG initiation codon and subsequent attachment of the 60S ribosomal subunit. (3) Elongation of the peptide chain, as assayed by peptidyl-puromycin formation, was markedly affected by the membrane inhibitor. Surprisingly, the membrane component caused a considerable increase in peptidyl-puromycin formation. (4) Reticulocyte ribosomes that had been reisolated by high-speed centrifugation, after preincubation with the membrane component, were found to be highly defective when assayed in a cell-free protein-synthesizing system. These results indicated that an extract of the reticulocyte cell membrane inhibited protein synthesis by interacting with the ribosome and thus interfered with the correct functions of the elongation stage of protein synthesis. The implications of this conclusion are discussed in the light of data showing that a highly purified preparation of the membrane inhibitor also displayed an endonucleolytic activity highly specific for 28S RNA.  相似文献   

10.
We partially purified an inhibitor from poliovirus-infected HeLa cells which specifically blocked phosphorylation of the alpha subunit of eucaryotic initiation factor 2 by the double-stranded RNA-activated protein kinase. The inhibitory activity eluted from a sizing column with an approximate molecular weight of 80,000 to 100,000 and was sensitive to heat, suggesting a protein nature for the inhibitor. No specific virus-encoded protein purified with the inhibitor. The inhibition of phosphorylation of the alpha subunit of eucaryotic initiation factor 2 was not due to a protein phosphatase associated with the inhibitor. The inhibitor did not seem to prevent phosphorylation of the double-stranded RNA-activated protein kinase but inhibited the phosphorylation of the alpha subunit of eucaryotic initiation factor 2 by the activated kinase. Double-stranded RNA-induced inhibition of in vitro protein synthesis in reticulocyte lysates could be prevented by the addition of the partially purified inhibitor during preincubation of lysate with double-stranded RNA.  相似文献   

11.
Vaccinia viral core inhibits protein synthesis in heme-supplemented reticulocyte lysate. A reticulocyte cell suPernatant factor, which reversed Protein synthesis inhibition in heme-deficient reticulocyte lysate also reversed vaccinia viral core induced Protein synthesis inhibition in heme-suPPlemented reticulocyte lysate. Significant inhibition reversal activity was also observed with a partially purified eukaryotic initiation factor-2 PreParation and this activity was lost uPon further Purification of eukaryotic initiation factor-2.The ribosomal salt-wash factor Co-eukaryotic initiation factor-2 which like reticulocyte suPernatant factor contains guanine nucleotide exchange factor activity, was comPletely inactive. Vaccinia viral core induced detectable level of eukaryotic initiation factor-2 α-subunit phosphorylation when incubated in the heme-supplemented reticulocyte lysate. This lysate preparation contains guanine nucleotide exchange factor activity. However, when the same reticulocyte lysate was previously incubated with the vaccinia viral core, the guanine nucleotide exchange factor activity during subsequent incubation was almost comPletely inhibited.  相似文献   

12.
Almost all living organisms studied respond to elevated temperature with a marked inhibition of overall protein synthesis but increased synthesis of a specific set of proteins, the so-called heat-shock proteins. We have prepared a cell-free protein synthesizing system (lysate) from heat-shocked Ehrlich ascites tumor cells that reflects the inhibition of protein synthesis in intact cells at elevated temperatures. We have isolated and partially purified a stimulator of the heat-shocked cell lysate from Ehrlich cells. Through four purification steps, the stimulator is chromatographically identical to eukaryotic initiation factor 4F (eIF-4F), an initiation factor which specifically binds mRNA cap structure. Therefore, we have tested the effects of highly purified reticulocyte eIF-4F on the heat-shocked cell lysate. Protein synthesis is strongly stimulated by addition of highly purified eIF-4F. Synthesis in the heat-shocked lysate is more inhibited at high (70 mM) KCl concentrations, than at lower concentrations, and stimulation by eIF-4F is correspondingly greater at higher KCl concentrations, so that the rate of protein synthesis is returned to control (non-heat-shocked lysate) levels at all KCl concentrations. Furthermore, at 70 mM KCl, in heat-shocked lysates, synthesis of the 68-kDa heat-shock protein is much less inhibited than synthesis of the bulk of non-heat-shock proteins, and eIF-4F stimulates synthesis of 68-kDa protein to a much lesser extent than non-heat-shock proteins. Thus, addition of purified eIF-4F reverses the effects of elevated temperatures on Ehrlich cells that are reflected in lysates. Therefore, we propose that the inhibition of translation in heat-shocked Ehrlich cells is the result of inactivation of eIF-4F function.  相似文献   

13.
The possible role of Met-tRNAf deacylase in the regulation of protein synthesis in rabbit reticulocyte lysate by the hemin-controlled translational repressor (HCR) or the double-stranded RNA-activated inhibitor (dsI) has been examined. Inhibition of protein synthesis by either HCR or dsI is associated with a marked increase in the steady state level of 48 S initiation complexes, containing a 40 S ribosomal subunit, globin mRNA, and a reduced level of Met-tRNAf, suggesting that the rate of 60 S subunit addition may be inhibited and that subunit-bound Met-tRNAf may become deacylated by Met-tRNAf deacylase. The addition of highly purified Met-tRNAf deacylase to lysate samples incubated with HCR or dsI reduces the [35S]Met-tRNAf labeling of 48 S complexes to even a lower level but has no effect on the high level of [35S]Met-tRNAf associated with 43 S complexes in the plus hemin control. The effect of added deacylase on the labeling of 48 S complexes with [35S]Met-tRNAf can be overcome by adding eIF-5 or a soluble reticulocyte protein that has been termed the reversing factor, but not by the addition of eIF-2. Added deacylase has no effect on the level of mRNA in 48 S complexes or the labeling of these complexes with [35S]fMet-tRNAf. When lysate samples were labeled with Met-tRNAf, purified from wheat germ or yeast, and doubly labeled with 32P at the 5' end and [35S]methionine aminoacylation, HCR reduced the level of 32P and 35S-labeled tRNAMetf in 48 S complexes to a similar degree, suggesting that once it has become deacylated, tRNAMetf dissociates from the 40 S subunit.  相似文献   

14.
The effect of a low-Mr factor, partially purified from E. coli B, was investigated in E. coli, reticulocyte, and wheat germ lysate in vitro protein synthesis systems. Equal concentrations of factor were needed to inhibit protein synthesis in the eukaryotic system as compared to the prokaryotic system. Experiments suggested that the factor inhibits the initiation step in the eukaryotic systems.  相似文献   

15.
Inhibition of polypeptide chain initiation in rabbit reticulocyte lysate by phosphorylation of eukaryotic initiation factor-2(alpha) results, secondarily, in the enzymatic deacylation of Met-tRNAf on the 48 S initiation complexes that accumulate. We have prepared an antibody to a highly purified preparation of the major Met-tRNAf deacylase activity on rabbit reticulocyte ribosomes, termed deacylase II. Antibody, but not similarly purified normal IgG, completely neutralizes the activity of Met-tRNAf deacylase II and has no effect on Met-tRNAf deacylase I, a separate, minor, reticulocyte activity with the same substrate specificity but very different physical and enzymatic properties, strongly suggesting that deacylase I and II are distinct proteins. We partially purified Met-tRNAf deacylase activities from rabbit liver, myocardium and bone marrow ribosomes and found them to be similar to each other and to reticulocyte deacylase I in their enzymatic properties and insensitivity to anti-deacylase II, suggesting that deacylase I may be a general form of this enzyme, present in many cells, while deacylase II may be induced specifically during erythroid differentiation. Addition of the antibody to reticulocyte lysate incubated in the absence of hemin or presence of hemin plus 0.1 microgram/ml poly(I X C) did not reverse the inhibition of protein synthesis but did reduce the rate of turnover/utilization of Met-tRNAf and increase the level of Met-tRNAf bound to 48 S initiation complexes, demonstrating that the deacylase does not directly inhibit protein synthesis under these conditions but does mediate the deacylation, loss, and thus greater than expected turnover of Met-tRNAf in the 48 S complexes that accumulate.  相似文献   

16.
A heat-stable, low-molecular-weight inhibitor of protein synthesis is formed on incubation of haemin-supplemented rabbit reticulocyte lysates with ATP and double-stranded RNA (dsRNA). It inhibits the translation of both added encephalomyocarditis virus RNA (EMC RNA) and endogeneous messenger RNA in reticulocyte lysates and mouse L-cell extracts. The enzyme responsible for the synthesis of the inhibitor binds to dsRNA and can be purified on a column of poly(I).poly (C) bound to an inert support. The highly purified enzyme in its stable column-bound state can be conveniently employed to synthesise the inhibitor and to label it with [3H]ATP, or [alpha-32P]ATP or [gamma-32P]ATP as substrate. The radioactive inhibitor synthesised in this way with material from rabbit reticulocyte lysates shows the same spectrum of resistance and sensitivity to alkali and a variety of enzymes as corresponding material similarly synthesised with extracts from interferon-treated mouse L-cells. The inhibitors from the two systems have comparable absorbance spectra, are chromatographically and electrophoretically indistinguishable and are apparently identical in specific activity in the inhibition of protein synthesis in the cell-free system. The inhibitor is also formed on inhibition of protein synthesis by dsRNA in reticulocyte lysates. On comparison of the spectrum of polypeptide products synthesised in response to EMC RNA in the reticulocyte lysate, the effects of the inhibitor or dsRNA were similar: a distinctly different effect was obtained with the haemin-controlled repressor, a known inhibitor of initiation. The significance of these results with respect to the mechanism of action of the inhibitor and its role in the inhibition observed in response to dsRNA is discussed.  相似文献   

17.
The cell-free synthesis of rat liver fatty acid synthetase has been demonstrated in a modified reticulocyte lysate translation system. The mRNA was partially purified from membrane-free polysomes by oligo (dT)-cellulose chromatography and subsequent sucrose density gradient centrifugation.  相似文献   

18.
The translation of poliovirus RNA in rabbit reticulocyte lysate was examined. Translation of poliovirus RNA in this cell-free system resulted in an electrophoretic profile of poliovirus-specific proteins distinct from that observed in vivo or after translation in poliovirus-infected HeLa cell extract. A group of proteins derived from the P3 region of the polyprotein was identified by immunoprecipitation, time course, and N-formyl-[35S]methionine labeling studies to be the product of the initiation of protein synthesis at an internal site(s) located within the 3'-proximal RNA sequences. Utilization of this internal initiation site(s) on poliovirus RNA was abolished when reticulocyte lysate was supplemented with poliovirus-infected HeLa cell extract. Authentic P1-1a was also synthesized in reticulocyte lysate, indicating that correct 5'-proximal initiation of translation occurs in that system. We conclude that the deficiency of a component(s) of the reticulocyte lysate necessary for 5'-proximal initiation of poliovirus protein synthesis resulted in the ability of ribosomes to initiate translation on internal sequences. This aberrant initiation could be corrected by factors present in the HeLa cell extract. Apparently, under certain conditions, ribosomes are capable of recognizing internal sequences as authentic initiation sites.  相似文献   

19.
[14C]Eukaryotic initiation factor 2 (eIF-2), obtained by reductive methylation of the purified initiation factor, was shown to be active in the unfractionated reticulocyte lysate. This allowed a direct measurement of the endogenous pool size of eIF-2 in rabbit reticulocyte lysate according to the principle of isotope dilution. A value of 20 to 30 pmol/ml of lysate was obtained. Although translational inhibition resulting from hemin deficiency appears to be characterized by a change from catalytic to stoichiometric utilization of eIF-2, the pool size of eIF-2 is too small to account for the normal period of protein synthesis before the onset of translation inhibition. This suggests, therefore, that additional events to eIF-2 alpha phosphorylation may be required for translational inhibition.  相似文献   

20.
Abstract: The rate of protein synthesis in mammalian brain tissue is affected by a variety of physiological conditions, both natural and induced. The process of initiation may be involved in some of the observed changes, although as yet the actual rates of initiation of natural mRNAs have not been directly measured in these circumstances. One approach to studying the regulation of protein synthesis in brain tissue would be to utilize a homologous cell-free system to examine in vitro the translation of various added mRNAs. The present report describes a micrococcal nuclease-treated cell-free lysate system derived from fetal mouse brain tissue which is capable of actively initiating and translating exogenously added mRNA. Sodium dodecyl sulfate-polyacrylamide slab gel electrophoretic analysis of the specific protein products of the reaction mixture allowed a qualitative and quantitative assessment of the translational process under a variety of experimental conditions. Optimal conditions for mRNA-dependent protein synthesis were the following: 30°C incubation temperature; 80–100 mM-KCl; 2.1 mM-Mg2+; 50 μM-spermhe; and 10 μg/ml poly A(+) mRNA. Incorporation of L-[35S]methionine into proteins required ATP, GTP, and an energy regenerating system. The addition of saturating amounts of a homologous "initiation factors" fraction stimulated incorporation twofold during the first 20 min of incubation, while the patterns of inhibition observed upon the addition of 5 × 10-5 M-aurin tricarboxylic acid at various periods during incubation demonstrated the occurrence of multiple rounds of initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号