首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When cooled at rapid rates to temperatures between −10 and −30°C, the incidence of intracellular ice formation was less in protoplasts enzymically isolated from cold acclimated leaves of rye (Secale cereale L. cv Puma) than that observed in protoplasts isolated from nonacclimated leaves. The extent of supercooling of the intracellular solution at any given temperature increased in both nonacclimated and acclimated protoplasts as the rate of cooling increased. There was no unique relationship between the extent of supercooling and the incidence of intracellular ice formation in either nonacclimated or acclimated protoplasts. In both nonacclimated and acclimated protoplasts, the extent of intracellular supercooling was similar under conditions that resulted in the greatest difference in the incidence of intracellular ice formation—cooling to −15 or −20°C at rates of 10 or 16°C/minute. Further, the hydraulic conductivity determined during freeze-induced dehydration at −5°C was similar for both nonacclimated and acclimated protoplasts. A major distinction between nonacclimated and acclimated protoplasts was the temperature at which nucleation occurred. In nonacclimated protoplasts, nucleation occurred over a relatively narrow temperature range with a median nucleation temperature of −15°C, whereas in acclimated protoplasts, nucleation occurred over a broader temperature range with a median nucleation temperature of −42°C. We conclude that the decreased incidence of intracellular ice formation in acclimated protoplasts is attributable to an increase in the stability of the plasma membrane which precludes nucleation of the supercooled intracellular solution and is not attributable to an increase in hydraulic conductivity of the plasma membrane which purportedly precludes supercooling of the intracellular solution.  相似文献   

2.
Kinetics of intracellular ice formation (IIF) under various freezing conditions was investigated for mouse oocytes at metaphase II obtained from B6D2F1 mice. A new cryostage with improved optical performance and "isothermal" temperature field was used for nucleation experiments. The maximum thermal gradient across the window was less than 0.1 degrees C/10 mm at sample temperatures near 0 degrees C. The dependence of IIF on the initial concentration of the suspending medium was found to be pronounced. The mean IIF temperatures were found to be -9.56, -12.49, -17.63, -22.20 degrees C for freezing at 120 degrees C/min in 200, 285, 510, and 735 mosm phosphate-buffered saline, respectively. For concentrations higher than 735 mosm, the kinetics of IIF showed a break point at approximately -31 degrees C. Below -31 degrees C, all the remaining unfrozen oocytes underwent IIF almost immediately over a temperature range of less than 3 degrees C. This dramatic shift in the kinetics of IIF suggests that there were two distinct mechanisms responsible for IIF during freezing. The effect of the cooling rate on the kinetics of IIF was also investigated in isotonic PBS. At 1 degrees C/min none of the oocytes contained ice, whereas, at 5 degrees C/min all the oocytes contained ice. The mean IIF temperatures for cooling rates between 1 and 120 degrees C/min were almost constant with an average of -12.82 +/- 0.6 degrees C (SEM). In addition, constant temperature experiments were conducted in isotonic PBS. The percentages of oocytes with IIF were 0, 50, 60, and 95% for -3.8, -6.4, -7.72, and -8.85 degrees C. In undercooling experiments, IIF was not observed until approximately -20 degrees C (at which temperature the whole suspension was frozen spontaneously), suggesting the involvement of the external ice in the initiation of IIF between approximately -5 and -31 degrees C during freezing of oocytes.  相似文献   

3.
4.
The current study presents a new and novel analysis of heat release signatures measured by a differential scanning calorimeter (DSC) associated with water transport (WT), intracellular ice formation (IIF) and extracellular ice formation (EIF). Correlative cryomicroscopy experiments were also performed to validate the DSC data. The DSC and cryomicroscopy experiments were performed on human dermal fibroblast cells (HDFs) at various cytocrit values (0–0.8) at various cooling rates (0.5–250 °C/min). A comparison of the cryomicroscopy experiments with the DSC analysis show reasonable agreement in the water transport (cellular dehydration) and IIF characteristics between both the techniques with the caveat that IIF measured by DSC lagged that measured by cryomicroscopy. This was ascribed to differences in the techniques (i.e. cell vs. bulk measurement) and the possibility that not all IIF is associated with visual darkening. High and low rates of 0.5 °C/min and 250 °C/min were chosen as HDFs did not exhibit significant IIF or WT at each of these extremes respectively. Analysis of post-thaw viability data suggested that 10 °C/min was the presumptive optimal cooling rate for HDFs and was independent of the cytocrit value. The ratio of measured heat values associated with IIF (qIIF) to the total heat released from both IIF and water transport or from the total cell water content in the sample (qCW) was also found to increase as the cooling rate was increased from 10 to 250 °C/min and was independent of the sample cytocrit value. Taken together, these observations suggest that the proposed analysis is capable of deconvolving water transport and IIF data from the measured DSC latent heat thermograms in cell suspensions during freezing.  相似文献   

5.
M W Scheiwe  C K?rber 《Cryobiology》1987,24(5):473-483
Purified human granulocytes were frozen in isotonic saline at different constant cooling rates down to -60 degrees C and subsequently thawed on the thermally defined cryostage of a cryomicroscope. Cells monitored on videotape were examined with respect to cooling rate threshold, type, and temperature of intracellular ice formation during cooling and recrystallization during warming. Two apparently different mechanisms of intracellular ice formation (iif) were distinguished during cooling, i.e., "twitching" (no visible ice front) and "darkening" (diffuse ice front). Both types of iif are related to cooling rate and hence also to dehydration. Cooling rate thresholds and temperatures of intracellular recrystallization were determined. It was found that twitching iif occurs just about 6.3 to 7.4 degrees C above the homogeneous nucleation temperature, suggesting that it might be catalyzed by nucleators present within the cells. Darkening iif, on the other hand, was observed at much higher temperatures, i.e., 23.4 to 28.3 degrees C above the homogeneous nucleation temperature, which could possibly indicate a nucleation induced by extracellular ice crystals (at a cooling rate of 30 degrees K/min, however, darkening iif was observed to occur at a temperature lower than that required for twitching iif). The proposed mechanisms of cryoinjury are related to membrane integrity measurements presented in M. W. Scheiwe, Ch. K?rber, and S. Englich, Cryo-Letters, 5, 300-306, 1984.  相似文献   

6.
The influence of lipids on ice formation during the freezing of cryoprotective medium for the semen of rainbow trout has been studied by the cryomicroscopy technique. It was shown that the lipids extracted from marine vertebrates and liposomes from the lipids of trout sperm effectively inhibit the ice formation in cryoprotective solutions during freezing, fundamentally changing the form and size of ice crystals. At high concentrations of lipids, either the crystallization does not occur in the cryoprotective medium or, even if ice crystals are formed, they have a broken shape and blurred borders. The addition of egg yolk sligthly increases the size and essentially changes the shape of ice crystals during the freezing of solution.  相似文献   

7.
MII mouse oocytes in 1 and 1.5M ethylene glycol(EG)/phosphate buffered saline have been subjected to rapid freezing at 50 degrees C/min to -70 degrees C. When this rapid freezing is preceded by a variable hold time of 0-3 min after the initial extracellular ice formation (EIF), the duration of the hold time has a substantial effect on the temperature at which the oocytes subsequently undergo intracellular ice formation (IIF). For example, in 1M EG, the IIF temperatures are -23.7 and -39.2 degrees C with 0 and 2 min hold times; in 1.5M EG, the corresponding IIF temperatures are -29.1 and -40.8 degrees C.  相似文献   

8.
9.
Mechanisms of intracellular ice formation.   总被引:8,自引:2,他引:6       下载免费PDF全文
The phenomenon of intracellular freezing in cells was investigated by designing experiments with cultured mouse fibroblasts on a cryomicroscope to critically assess the current hypotheses describing the genesis of intracellular ice: (a) intracellular freezing is a result of critical undercooling; (b) the cytoplasm is nucleated through aqueous pores in the plasma membrane; and (c) intracellular freezing is a result of membrane damage caused by electrical transients at the ice interface. The experimental data did not support any of these theories, but was consistent with the hypothesis that the plasma membrane is damaged at a critical gradient in osmotic pressure across the membrane, and intracellular freezing occurs as a result of this damage. An implication of this hypothesis is that mathematical models can be used to design protocols to avoid damaging gradients in osmotic pressure, allowing new approaches to the preservation of cells, tissues, and organs by rapid cooling.  相似文献   

10.
Intracellular ice crystallization was studied by the method of cryomicroscopy in the systems modeling a biological suspension, such as erythrocyte concentrates. Initiation of crystallization by extracellular ice through hydrophilic channels has been shown to be the most probable mechanism of intracellular ice formation.  相似文献   

11.
12.
During freezing, intracellular ice formation (IIF) has been correlated with loss in viability for a wide variety of biological systems. Hence, determination of IIF characteristics is essential in the development of an efficient methodology for cryopreservation. In this study, IIF characteristics of hepatocytes cultured in a collagen matrix were determined using cryomicroscopy. Four factors influenced the IIF behavior of the hepatocytes in the matrix: cooling rate, final cooling temperature, concentration of Me2SO, and time in culture prior to freezing. The maximum cumulative fraction of cells with IIF increased with increasing cooling rate. For cultured cells frozen in Dulbecco's modified Eagle's medium (DMEM), the cooling rate for which 50% of the cells formed ice (B50) was 70 degrees C/min for cells frozen after 1 day in culture and decreased to 15 degrees C/min for cells frozen after 7 days in culture. When cells were frozen in a 0.5 M Me2SO + DMEM solution, the value of B50 decreased from 70 to 50 degrees C/min for cells in culture for 1 day and from 15 to 10 degrees C/min for cells in culture for 7 days. The value of the average temperature for IIF (TIIF) for cultured cells was only slightly depressed by the addition of Me2SO when compared to the IIF behavior of other cell types. The results of this study indicate that the presence of the collagen matrix alters significantly the IIF characteristics of hepatocytes. Thus freezing studies using hepatocytes in suspension are not useful in predicting the freezing behavior of hepatocytes cultured in a collagen matrix. Furthermore, the weak effect of Me2SO on IIF characteristics implies that lower concentrations of Me2SO (0.5 M) may be just as effective in preserving viability. Finally, the value of B50 measured in this study indicates that cooling rates nearly an order of magnitude faster than those previously investigated could be used for cryopreservation of the hepatocytes in a collagen gel.  相似文献   

13.
14.
Kinetics of intracellular ice formation (IIF) for isolated rat hepatocytes was studied using a cryomicroscopy system. The effect of the cooling rate on IIF was investigated between 20 and 400 degrees C/min in isotonic solution. At 50 degrees C/min and below, none of the hepatocytes underwent IIF; whereas at 150 degrees C/min and above, IIF was observed throughout the entire hepatocyte population. The temperature at which 50% of hepatocytes showed IIF (50TIIF) was almost constant with an average value of -7.7 degrees C. Different behavior was seen in isothermal subzero holding temperatures in the presence of extracellular ice. 50TIIF from isothermal temperature experiments was approximately -5 degrees C as opposed to -7.7 degrees C for constant cooling rate experiments. These experiments clearly demonstrated both the time and temperature dependence of IIF. On the other hand, in cooling experiments in the absence of extracellular ice, IIF was not observed until approximately -20 degrees C (at which temperature the whole suspension was frozen spontaneously) suggesting the involvement of the external ice in the initiation of IIF. The effect of dimethyl sulfoxide (Me2SO) on IIF was also quantified. 50TIIF decreased from -7.7 degrees C in the absence of Me2SO to -16.8 degrees C in 2.0 M Me2SO for a cooling rate of 400 degrees C/min. However, the cooling rate (between 75 and 400 degrees C/min) did not significantly affect 50TIIF (-8.7 degrees C) in 0.5 M Me2SO. These results suggest that multistep protocols will be required for the cryopreservation of hepatocytes.  相似文献   

15.
The occurrence of intracellular ice formation (IIF) during freezing, or the lack there of, is the single most important factor determining whether or not cells survive cryopreservation. One important determinant of IIF is the temperature at which a supercooled cell nucleates. To avoid intracellular ice formation, the cell must be cooled slowly enough so that osmotic dehydration eliminates nearly all cell supercooling before reaching that temperature. This report is concerned with factors that determine the nucleation temperature in mouse oocytes. Chief among these is the concentration of cryoprotective additive (here, glycerol or ethylene glycol). The temperature for IIF decreases from -14 degrees C in buffered isotonic saline (PBS) to -41 degrees C in 1M glycerol/PBS and 1.5M ethylene glycol/PBS. The latter rapidly permeates the oocyte; the former does not. The initial extracellular freezing at -3.9 to -7.8 degrees C, depending on the CPA concentration, deforms the cell. In PBS that deformation often leads to IIF; in CPA it does not. The oocytes are surrounded by a zona pellucida. That structure appears to impede the growth of external ice through it, but not to block it. In most cases, IIF is characterized by an abrupt blackening or flashing during cooling. But in some cases, especially with dezonated oocytes, a pale brown veil abruptly forms during cooling followed by slower blackening during warming. Above -30 degrees C, flashing occurs in a fraction of a second. Below -30 degrees C, it commonly occurs much more slowly. We have observed instances where flashing is accompanied by the abrupt ejection of cytoplasm. During freezing, cells lie in unfrozen channels between the growing external ice. From phase diagram data, we have computed the fraction of water and solution that remains unfrozen at the observed flash temperatures and the concentrations of salt and CPA in those channels. The results are somewhat ambiguous as to which of these characteristics best correlates with IIF.  相似文献   

16.
The formation of wall-like envelopes by isolated tomato-fruit protoplasts   总被引:1,自引:0,他引:1  
Summary Formation of a new cell wall around tomato protoplasts was confirmed by optical microscopy, electron microscopy and X-ray diffraction. This wall is composed of three layers; (a) an outer ring, which seems to be composed of diffuse, amorphous material, (b) an intermediate space, crossed by radial fibers, (c) a thicker, inner band composed of dense, highly consolidated material which may have sub-layers within it. Occasionally, cells are observed with only the dense consolidated layer about them. The origin of this wall and its component layers is not yet understood.National Research Council Post-doctoral Fellow, 1967–1969.  相似文献   

17.
Microscopic observations made during preparation of protoplasts and vacuoles from red radish seedling hypocotyl (Raphanus sativus L.) show that anthocyanoplasts, the strongly pigmented bodies present in the pigmented cells of the hypodermis, begin as apparently membranous vesicles in the cytoplasm made visible by the deposition and accumulation of anthocyanins, but only rarely appear in the isolated vacuole. Isolation of protoplasts and vacuoles was also achieved from mung bean seedling hypocotyl (Vigna radiata L Wilczek), red cabbage leaf (Brassica oleracea L.) and Prunus x yedoensis Matsum callus. Anthocyanoplasts were usually in the vacuole, although sometimes in the cytoplasm, of the mung bean and cabbage, but were never seen in vacuoles of Prunus callus.  相似文献   

18.
A high-speed video cryomicroscopy system was developed, and used to observe the process of intracellular ice formation (IIF) during rapid freezing (130 °C/min) of bovine pulmonary artery endothelial cells adherent to glass substrates, or in suspension. Adherent cells were micropatterned, constraining cell attachment to reproducible circular or rectangular domains. Employing frame rates of 8000 frames/s and 16,000 frames/s to record IIF in micropatterned and suspended cells, respectively, intracellular crystal growth manifested as a single advancing front that initiated from a point source within the cell, and traveled at velocities of 0.0006-0.023 m/s. Whereas this primary crystallization process resulted in minimal change in cell opacity, the well-known flashing phenomenon (i.e., cell darkening) was shown to be a secondary event that does not occur until after the ice front has traversed the cell. In cells that were attached and spread on a substrate, IIF initiation sites were preferentially localized to the peripheral zone of the adherent cells. This non-uniformity in the spatial distribution of crystal centers contradicts predictions based on common theories of IIF, and provides evidence for a novel mechanism of IIF in adherent cells. A second IIF mechanism was evident in ∼20% of attached cells. In these cases, IIF was preceded by paracellular ice penetration; the initiation site of the subsequent IIF event was correlated with the location of the paracellular ice dendrite, indicating an association (and possibly a causal relationship) between the two. Together, the peripheral-zone and dendrite-associated initiation mechanisms accounted for 97% of IIF events in micropatterned cells.  相似文献   

19.
Cryomicroscopy and differential scanning calorimetry (DSC) were used to characterize the incidence of intracellular ice formation (IIF) in 12- to 13-hr-old embryos of Drosophila melanogaster (Oregon-R strain P2) as influenced by the state of the eggcase (untreated, dechorionated, or permeabilized), the composition of the suspending medium (with and without cryoprotectants), and the cooling rate. Untreated eggs underwent IIF over a very narrow temperature range when cooled at 4 or 16 degrees C/min with a median temperature of intracellular ice formation (TIIF50) of -28 degrees C. The freezable water volume of untreated eggs was approximately 5.4 nl as determined by DSC. IIF in dechorionated eggs occurred over a much broader temperature range (-13 to -31 degrees C), but the incidence of IIF increased sharply below -24 degrees C, and the cumulative incidence of IIF at -24 degrees C decreased with cooling rate. In permeabilized eggs without cryoprotectants (CPAs), IIF occurred at much warmer temperatures and over a much wider temperature range than in untreated eggs, and the TIIF50 was cooling rate dependent. At low cooling rates (1 to 2 degrees C/min), TIIF50 increased with cooling rate; at intermediate cooling rates (2 to 16 degrees C/min), TIIF50 decreased with cooling rate. The total incidence of IIF in permeabilized eggs was 54% at 1 degree C/min, and volumetric contraction almost always occurred during cooling. Decreasing the cooling rate to 0.5 degree C/min reduced the incidence of IIF to 43%. At a cooling rate of 4 degrees C/min, ethylene glycol reduced the TIIF50 by about 12 degrees C for each unit increase in molarity of CPA (up to 2.0 M) in the suspending medium. The TIIF50 was cooling rate dependent when embryos were preequilibrated with 1.0 M propylene glycol or ethylene glycol, but was not so in 1.0 M DMSO. For embryos equilibrated in 1.5 M ethylene glycol and then held at -5 degrees C for 1 min before further cooling at 1 degree C/min, the incidence of IIF was decreased to 31%. Increasing the duration of the isothermal hold to 10 min reduced the incidence of IIF to 22% and reduced the volume of freezable water in embryos when intracellular ice formation occurred. If the isothermal hold temperature was -7.5 or -10 degrees C, a 10- to 30-min holding time was required to achieve a comparable reduction in the incidence of IIF.  相似文献   

20.
Summary Mesophyll protoplasts were isolated from axenic shoot cultures ofSolanum melongena by the one-step enzymatic method. Of the different media employed for the culture of protoplasts, a medium modified fromKao andMichayluk (1975) supported sustained mitotic cycles most effectively. Organogenesis from protoplast-derived callus was achieved on transfer toMurashige andSkoog'S (1962) medium supplemented with an appropriate auxin and a cytokinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号