首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ionic strength dependence of the electron self-exchange rate constants of cytochromes c, c551, and b5 has been analyzed in terms of a monopole-dipole formalism (van Leeuwen, J.W. 1983. Biochim. Biophys. Acta. 743:408-421). The dipole moments of the reduced and oxidized forms of Ps. aeruginosa cytochrome c551 are 190 and 210 D, respectively (calculated from the crystal structure). The projections of these on the vector from the center of mass through the exposed heme edge are 120 and 150 D. For cytochrome b5, the dipole moments calculated from the crystal structure are 500 and 460 D for the reduced and oxidized protein; the projections of these dipole moments through the exposed heme edge are -330 and -280 D. A fit of the ionic strength dependence of the electron self-exchange rate constants gives -280 (reduced) and -250 (oxidized) D for the center of mass to heme edge vector. The self-exchange rate constants extrapolated to infinite ionic strength of cytochrome c, c551, and b5 are 5.1 x 10(5), 2 x 10(7), and 3.7 x 10(5) M-1 s-1, respectively. The extension of the monopole-dipole approach to other cytochrome-cytochrome electron transfer reactions is discussed. The control of electron transfer by the size and shape of the protein is investigated using a model which accounts for the distance of the heme from each of the surface atoms of the protein. These calculations indicate that the difference between the electrostatically corrected self-exchange rate constants of cytochromes c and c551 is due only in part to the different sizes and heme exposures of the two proteins.  相似文献   

3.
The reduction of horse and Candida krusei cytochromes c by ferrocyanide has been studied by 1H NMR spectroscopy and the reaction found to involve a precursor complex of ferrocyanide bound to ferricytochrome c (pH* 7.4, 2H2O, I = 0.12, and 25 degrees C). The electron transfer rate constants for the reduction of the two ferricytochromes by associated ferrocyanide were found to be the same at 780 +/- 80 sec-1 but the association constants for binding of ferrocyanide to ferricytochrome c were significantly different: horse, 90 +/- 20 M-1 and Candida, 285 +/- 30 M-1. The different association constants partly accounts for the previously observed reactivity difference between horse and Candida cytochromes c. Comparison of the NMR data with data obtained by other kinetic methods has allowed the electron transfer rate constant for the oxidation of ferrocytochrome c by associated ferricyanide to be determined. This was found to be 4.6 +/- 1 X 10(4) sec-1.  相似文献   

4.
Methanosarcina strain G?1 was tested for the presence of cytochromes. Low-temperature spectroscopy, hemochrome derivative spectroscopy, and redox titration revealed the presence of two b-type (b559 and b564) and two c-type (c547 and c552) cytochromes in membranes from Methanosarcina strain G?1. The midpoint potentials determined were Em,7 = -135 +/- 5 and -240 +/- 11 mV (b-type cytochromes) and Em,7 = -140 +/- 10 and -230 +/- 10 mV (c-type cytochromes). The protoheme IX and the heme c contents were 0.21 to 0.24 and 0.09 to 0.28 mumol/g of membrane protein, respectively. No cytochromes were detectable in the cytoplasmic fraction. Of various electron donors and acceptors tested, only the reduced form of coenzyme F420 (coenzyme F420H2) and the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate (CoM-S-S-HTP) were capable of reducing and oxidizing the cytochromes at a high rate, respectively. Addition of CoM-S-S-HTP to reduced cytochromes and subsequent low-temperature spectroscopy revealed the oxidation of cytochrome b564. On the basis of these results, we suggest that one or several cytochromes participate in the coenzyme F420H2-dependent reduction of the heterodisulfide.  相似文献   

5.
The electron-transfer site of spinach plastocyanin   总被引:2,自引:0,他引:2  
J D Rush  F Levine  W H Koppenol 《Biochemistry》1988,27(16):5876-5884
Two sites for electron transfer have been proposed for plastocyanin: one near the copper ion and the other close to the acid patch formed by residues 42-45. Calculations of electrostatic properties of spinach plastocyanin and ionic strength dependences of electron-transfer reactions of this protein have been used to distinguish between these two sites. Calculations show that the electric potential field of spinach plastocyanin is highly asymmetric and that the protein has a dipole moment of 360 D. The negative end of the dipole axis emerges between the negative patches formed by residues 42-45, which is though to be the cation binding site, and residues 59-61. The angles between the dipole vector and vectors from the center of mass to the copper ion and to the acid patch are 90 degrees and 30 degrees, respectively. The angle between the dipole vector and a line from the center of mass to the site of electron transfer is evaluated from the ionic strength dependence of electron-transfer rates at pH 7.8 with the help of equations developed by Van Leeuwen et al. [van Leeuwen, J.W., Mofers, F.J.M., & Veerman, E.C.I. (1981) Biochim. Biophys. Acta 635, 434] and Van Leeuwen [van Leeuwen, J.W. (1983) Biochim. Biophys. Acta 743, 408]. The angles found are 85 degrees, 110 degrees, and 75 +/- 15 degrees for reactions with tris(1,10-phenanthroline)cobalt(III), hexacyanoferrate(III), and ferrocytochrome c, respectively. The electric potential field calculations suggest that the hexacyanoferrate(III) interaction angle corresponds to a unique site of minimum repulsion at the hydrophobic region of the protein surface, close to the copper ion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The dynamic behavior of various types of cytochromes c in the redox reaction with iron hexacyanides was studied using a temperature-jump method in order to elucidate the molecular mechanism of the redox reaction of cytochromes with their oxidoreductants. Transmittance after the temperature jump changed through a single exponential decay for all cytochromes investigated. Under a constant concentration of anion, the redox reaction of various types of cytochrome c with iron hexacyanides was analyzed according to the scheme: (see formula in text) where C(III) and C(II) are ferric and ferrous cytochromes, respectively, Fe(III) and Fe(II) are ferri- and ferrocyanides, respectively, C(III) . Fe(II) is the ferricytochrome-ferrocyanide complex and C(II) . Fe(III) is the ferrocytochrome-ferricyanide complex. When step B is slower than the other two steps A and C, tau-1 can be represented approximately as (see formula in text) where the bar over the variables denotes the equilibrium value. In a large excess of ferrocyanide against cytochrome, we can estimate kappa 2, kappa-2, K1 and K3 independently. In the case of horse cytochrome c at 18 degrees C in 0.1 M phosphate buffer at pH 7 with 0.3 M KNO3, the estimated parameters are kappa 2 = 100 +/- 50 S-1, kappa-2 = (3.5 +/- 1.0) . 10(3) S-1, K1 = 15 +/- 7 M-1 and K3 = (8.5 +/- 1.5). 10(-4) M. From the same experiments for seven cytochromes (cytochrome c from horse, tuna, Candida krusei, Saccharomyces oviformis, Rhodospirillum rubrum cytochrome c2, Spirulina platensis cytochrome c-554 and Thermus thermophilus cytochrome c-552), the following results can be deduced. (1) Each parameter defined in the scheme above (kappa 2, kappa-2, K1, K3) diverged beyond the error range. Above all, kappa 2 values of cytochromes c-554 and c-552 are as large as 1 . 10(4) S-1 and much larger than those for the other cytochromes (to 50 approx. 700 S-1). (2) The variance of kappa 2K1 and kappa-2/K3 are relatively less than the variances of individual parameters (kappa 2, kappa-2, K1 and K3), which suggests that the values of kappa 2K1 and kappa-2/K3 have been conserved during the course of evolution.  相似文献   

7.
Electron transfer between horse heart and Candida krusei cytochromes c in the free and phosvitin-bound states was examined by difference spectrum and stopped-flow methods. The difference spectra in the wavelength range of 540-560 nm demonstrated that electrons are exchangeable between the cytochromes c of the two species. The equilibrium constants of the electron transfer reaction for the free and phosvitin-bound forms, estimated from these difference spectra, were close to unity at 20 degrees C in 20 mM Tris-HCl buffer (pH 7.4). The electron transfer rate for free cytochrome c was (2-3).10(4) M-1.s-1 under the same conditions. The transfer rate for the bound form increased with increase in the binding ratio at ratios below half the maximum, and was almost constant at higher ratios up to the maximum. The maximum electron exchange rate was about 2.10(6) M-1.s-1, which is 60-70 times that for the free form at a given concentration of cytochrome c. The activation energy of the reaction for the bound cytochrome c was equal to that for the free form, being about 10 kcal/mol. The dependence of the exchange rate on temperature, cytochrome c concentration and solvent viscosity suggests that enhancement of the electron transfer rate between cytochromes c on binding to phosvitin is due to increase in the collision frequency between cytochromes c concentrated on the phosvitin molecule.  相似文献   

8.
Heitmann D  Einsle O 《Biochemistry》2005,44(37):12411-12419
Multiheme cytochromes c constitute a widespread class of proteins with essential functions in electron transfer and enzymatic catalysis. Their functional properties are in part determined by the relative arrangement of multiple heme cofactors, which in many cases have been found to pack in conserved interaction motifs. Understanding the significance of these motifs is crucial for the elucidation of the highly optimized properties of multiheme cytochromes c, but their spectroscopic investigation is often hindered by the large number and efficient coupling of the individual centers and the limited availability of recombinant protein material. We have identified a diheme cytochrome c, DHC2, from the metal-reducing soil bacterium Geobacter sulfurreducens and determined its crystal structure by the method of multiple-wavelength anomalous dispersion (MAD). The two heme groups of DHC2 pack into one of the typical heme interaction motifs observed in larger multiheme cytochromes, but because of the absence of further, interfering cofactors, the properties of this heme packing motif can be conveniently studied in detail. Spectroscopic properties (UV-vis and EPR) of the protein are typical for cytochromes containing low-spin Fe(III) centers with bis-histidinyl coordination. Midpoint potentials for the two heme groups have been determined to be -135 and -289 mV by potentiometric redox titrations. DHC2 has been produced by recombinant expression in Escherichia coli using the accessory plasmid pEC86 and is therefore accessible for systematic mutational studies in further investigating the properties of heme packing interactions in cytochromes c.  相似文献   

9.
The giant approximately 3.6 MDa hexagonal bilayer hemoglobin (HBL Hb) from Lumbricus terrestris consists of 12 213-kDa dodecamers of four globin chains ([b + a + c]3[d]3) tethered to a central scaffold of approximately 36 non-globin, linker subunits L1-L4 (24-32 kDa). Three-dimensional reconstructions obtained by electron cryomicroscopy showed it to have a D6 point-group symmetry, with the two layers rotated approximately 16 degrees relative to each other. Measurement of the dielectric constants of the Hb and the dodecamer over the frequency range 5-100 kHz indicated relaxation frequencies occurring at 20-40 and 300 kHz, respectively, substantially lower than the 700-800 kHz in HbA. The dipole moments calculated using Oncley's equation were 17,300 +/- 2300 D and 1400 D for the Hb and dodecamer, respectively. The approximately threefold higher dipole moment of the dodecamer relative to HbA is consistent with an asymmetric shape in solution suggested by small-angle X-ray scattering. Although a two-term Debye equation and a prolate ellipsoid of revolution model provided a good fit to the experimental dielectric dispersion of the dodecamer, a three-term Debye equation based on an oblate ellipsoid of revolution model was required to fit the asymmetric dielectric dispersion curve of the Hb: the required additional term may represent either an induced dipole moment or a substructure which rotates independently of the main permanent dipole component of the Hb. The D6 point-group symmetry implies that the dipole moments of the dodecamers cancel out. Thus, in addition to a possible contribution from fluctuations of the proton distribution, the large dipole moment of the Hb may be due to an asymmetric distribution of the heterogeneous linker subunits.  相似文献   

10.
The ability of various native and modified cytochromes c to transfer electrons to cytochrome oxidase is compared in cytochrome c depleted beef heart mitochondrial particles. The kinetics are followed at -49 degrees C after the reaction is initiated by photolysis of the CO compound of cytochrome oxidase in the presence of oxygen. Horse, human, yeast iso-2, and carboxydinitrophenyl (CDNP)-lysine-60 horse cytochromes c all give initial rates of electron transfer that are equal to those observed in whole beef mitochondria. Euglena, CDNP-lysine-72, and CDNP-lysine-13 horse cytochromes c give rates about one-tenth that of whole mitochondria. These rates were independent of the concentration of cytochrome c. Since the inhibited cytochromes c, but not the active proteins, had previously been shown to have lowered affinity for cytochrome oxidase, the results indicate that the structural characteristics important for the association of cytochrome c and oxidase are also essential for achieving normal rates of electron transfer within the complex once formed.  相似文献   

11.
The cyanobacterium Synechococcus sp. PCC 7002 carries two genes, petJ1 and petJ2, for proteins related to soluble, cytochrome c6 electron transfer proteins. PetJ1 was purified from the cyanobacterium, and both cytochromes were expressed with heme incorporation in Escherichia coli. The expressed PetJ1 displayed spectral and biochemical properties virtually identical to those of PetJ1 from Synechococcus. PetJ1 is a typical cytochrome c6 but contains an unusual KDGSKSL insertion. PetJ2 isolated from E. coli exhibited absorbance spectra characteristic of cytochromes, although the alpha, beta, and gamma bands were red-shifted relative to those of PetJ1. Moreover, the surface electrostatic properties and redox midpoint potential of PetJ2 (pI 9.7; E(m,7) = 148 +/- 1.7 mV) differed substantially from those of PetJ1 (pI 3.8; E(m,7) = 319 +/- 1.6 mV). These data indicate that the PetJ2 cytochrome could not effectively replace PetJ1 as an electron acceptor for the cytochrome bf complex in photosynthesis. Phylogenetic comparisons against plant, algal, bacterial, and cyanobacterial genomes revealed two novel and widely distributed clusters of previously uncharacterized, cyanobacterial c 6-like cytochromes. PetJ2 belongs to a group that is distinct from both c6 cytochromes and the enigmatic chloroplast c 6A cytochromes. We tentatively designate the PetJ2 group as c6C cytochromes and the other new group as c6B cytochromes. Possible functions of these cytochromes are discussed.  相似文献   

12.
The intermolecular electron transfer kinetics between nitrite reductase (NiR, cytochrome cd1) isolated from Pseudomonas nautica and three cytochromes c isolated from the same strain, as well as the intramolecular electron transfer between NiR heme c and NiR heme d1, were investigated by cyclic voltammetry. All cytochromes (cytochrome c552, cytochrome c553 and cytochrome C553(548)) exhibited well-behaved electrochemistry. The individual diffusion coefficients and mid-point redox potentials were determined. Under the experimental conditions, only cytochrome c552 established a rapid electron transfer with NiR. At acidic pH, the intermolecular electron transfer (cytochrome c(552red)-->NiR heme cox) is a second-order reaction with a rate constant (k2) of 4.1+/-0.1x10(5) M(-1) s(-1) (pH=6.3 and 100 mM NaCl). Under these conditions, the intermolecular reaction represents the rate-limiting step. A minimum estimate of 33 s(-1) could be determined for the first-order rate constant (k1) of the intramolecular electron transfer reaction NiR heme c(red)-->NiR heme d1ox. The pH dependence of k2 values was investigated at pH values ranging from 5.8 to 8.0. When the pH is progressively shifted towards basic values, the rate constant of the intramolecular electron transfer reaction NiR heme c(red)-->NiR heme d1ox decreases gradually to a point where it becomes rate limiting. At pH 8.0 we determined a value of 1.4+/-0.7 s(-1), corresponding to a k2 value of 2.2+/-1.1x10(4) M(-1) s(-1) for the intermolecular step. The physiological relevance of these results is discussed with a particular emphasis on the proposed mechanism of "dead-end product" formation.  相似文献   

13.
Membrane fragments isolated from the aerobic phototrophic bacterium Roseobacter denitrificans were examined. Ninety-five percent of the total NADH-dependent oxidative activity was inhibited either by antimycin A or myxothiazol, two specific inhibitors of the cytochrome bc1 complex, which indicates that the respiratory electron transport chain is linear. In agreement with this finding, light-induced oxygen uptake, an electron transport activity catalyzed by the "alternative quinol oxidase pathway" in membranes of several facultative phototrophic species, was barely detectable in membranes of Rsb. denitrificans. Redox titrations at 561-575 nm, 552-540 nm, and 602-630 nm indicated the presence of three b-type cytochromes (Em,7 of +244 +/- 8, +24 +/- 3, -163 +/- 11 mV), four c-type cytochromes (Em,7 of +280 +/- 10, +210 +/- 5, +125 +/- 8, and 20 +/- 3 mV) and two a-type cytochromes (Em,7 of +335 +/- 15, +218 +/- 18 mV). The latter two a-type hemes were shown to be involved in cytochrome c oxidase activity, which was inhibited by both cyanide (I50 = 2 microM) and azide (I50 = 1 mM), while a soluble cytochrome c (c551, Em,7 = +217 +/- 2 mV) was shown to be the physiological electron carrier connecting the bc1 complex to the cytochrome c oxidase. A comparison of the ATP synthesis generated by continuous light in membranes of Rsb. denitrificans and Rhodobacter capsulatus showed that in both bacterial species photophosphorylation requires a membrane redox poise at the equilibrium (Eh > or = +80 < or = +140 mV), close to the oxidation-reduction potential of the ubiquinone pool. These data, taken together, suggest that, although the photosynthetic apparatus of Rsb. denitrificans is functionally similar to that of typical anoxygenic phototrophs, e.g. Rba. capsulatus, the in vivo requirement of a suitable redox state at the ubiquinone pool level restricts the growth capacity of Rsb. denitrificans to oxic conditions.  相似文献   

14.
Y Y Huang  T Hara  S Sligar  M J Coon  T Kimura 《Biochemistry》1986,25(6):1390-1394
An optically transparent thin-layer electrode cell with a very small volume was used for determination of the formal reduction potentials of bacterial, microsomal, and mitochondrial cytochromes P-450. At an extrapolated zero concentration of dye, the bacterial cytochrome from Pseudomonas putida catalyzing the hydroxylation of camphor and the adrenal mitochondrial cytochrome catalyzing the cholesterol side-chain cleavage reaction had formal reduction potentials of -168 and -285 mV (pH 7.5 and 25 degrees C), respectively. The oxidation-reduction potentials for the rabbit liver microsomal cytochrome P-450 induced by 3-methylcholanthrene and the mitochondrial cytochrome for steroid 11 beta-hydroxylation were found as -360 and -286 mV, respectively. Potential measurements at different temperatures allowed documentation of the standard thermodynamic parameters for cytochrome P-450 reduction for the first time. All cytochromes tested were found to have a relatively large negative entropy change upon reduction. The extent of these changes is comparable to that observed for the ferric-ferrous couple of cytochrome c. An entropy-enthalpy compensation effect was observed among the four cytochromes P-450 examined although the correlation is weaker than that observed with cytochrome c isolated from various sources.  相似文献   

15.
To understand the determinants of redox potential and protein stability in c-type cytochromes, we have characterized two mutations to a highly conserved tyrosine group, tyrosine-75, of Rhodobacter capsulatus cytochrome c2. Mutant Y75F was designed to test the importance of the tyrosine hydroxyl group to the typically high redox potentials of the cytochromes c2 while maintaining a hydrophobic core. Mutant Y75C was designed to test the importance of a large hydrophobic group to redox potential by replacing an aromatic group with a small nonpolar group. Both mutants exhibit spectral and redox properties indicating that their heme environments have been perturbed. The kinetics of reduction by lumiflavin semiquinone and photooxidation by Rhodobacter sphaeroides photosynthetic reaction centers have been used to demonstrate that both mutants are structurally analogous to the wild-type protein at the active site of electron transfer. Different degrees of relative stability of the mutants toward a denaturant have been observed with the order being Y75C less than wt less than Y75F in the oxidized state and Y75C less than Y75F less than wt in the reduced state. These results are discussed in light of the recent structure determination of the R. capsulatus wild-type ferrocytochrome c2 to suggest that R. capsulatus tyrosine-75, or its equivalent in other species, is part of a conserved hydrogen-bonding network which plays an important role in maintaining high redox potentials and protein stability of cytochromes c in general.  相似文献   

16.
Cytochromes c of Acidithiobacillus ferrooxidans   总被引:2,自引:0,他引:2  
The chemolithoautotrophic Gram-negative bacterium Acidithiobacillus ferrooxidans is versatile and can grow on a number of electron donors and acceptors. In the A. ferrooxidans ATCC 23270 genome, computer analysis identified 11 genes encoding putative cytochromes c. At least eight putative cytochromes c were differentiated on gels in ATCC 33020 cells grown on ferrous iron or sulfur. All these cytochromes were associated with the inner or the outer membranes. Lower levels of total cytochromes c were observed in sulfur- than in ferrous iron-grown cells. One cytochrome c was specific for sulfur conditions while three were specific for iron conditions, suggesting that cytochrome c synthesis is modulated depending on the electron donor.  相似文献   

17.
A study is presented of the characteristics of redox-linked proton translocation in the b-c1 complex isolated from beef-heart mitochondria and reconstituted into phospholipid vesicles. Measurements of the H+/e- stoichiometry, with three different methods, show that four protons are released from the vesicles per 2e- flowing from quinols to cytochrome c, two of these protons formally deriving from scalar oxidation of quinols by cytochrome c. This H+/e- stoicheiometry is independent of the initial redox state of the b-c1 complex (fully reduced or oxidized) and the rate of electron flow through the complex. It does not change in the pH range 6.0 - 7.2, but declines to 1.5 going with pH from 7.2 - 8.3. This decrease is accompanied by enhancement of the rate of electron flow in the coupled state. Collapse of delta psi effected by valinomycin addition to turning-over b-c1 vesicles resulted in substantial oxidation of cytochrome b-566 and comparable reduction of cytochrome c1, with little oxidation of cytochrome b-562. Nigericin alone had no effect on the steady-state redox levels of b and c cytochromes. Its addition in the presence of valinomycin caused oxidation of b cytochromes but no change in the redox state of cytochrome c1. Valinomycin alone caused a marked enhancement of the rate of electron flow through the complex. Nigericin alone was ineffective, but caused further stimulation of electron flow when added in the presence of valinomycin. The data presented are discussed in terms of two mechanisms: the Q cycle and a model based on combination of protonmotive catalysis by special bound quinone and proton conduction along pathways in the apoproteins.  相似文献   

18.
In the eukaryotic alga Cyanophora paradoxa, which does not contain plastocyanin, photosynthetic electron transport from the cytochrome b6/f complex to photosystem I is mediated by cytochrome c6. Cytochrome c6 was purified to homogeneity by column chromatography and FPLC. The relative molecular mass of the holoprotein was determined by two different mass spectrometric methods (californium-252 plasma desorption and UV matrix-assisted laser desorption ionization) giving 9251 +/- 3.3 Da. N-terminal Edman microsequencing yielded information on approx. 30 amino acid residues. Based on these data and on highly conserved regions of cytochromes c6, degenerate oligonucleotides were designed and used for PCR to amplify the genomic DNA of C. paradoxa. Screening of a C. paradoxa cDNA library yielded several clones coding for preapo-cytochrome c6. The deduced sequence of the mature protein was verified by plasma desorption mass spectrometric peptide mapping and shows high similarity to those of cytochromes c6 from cyanobacteria and algae. Cytochrome c6 appears to be encoded by a single nuclear gene (petJ) in C. paradoxa. As the mature protein is located in the lumen of the thylakoid membrane, it has to traverse three biological membranes as well as the unique peptidoglycan layer of the cyanelles before it reaches its final subcellular locale. Thus the transit sequence is composed of two different targeting signals: a stroma targeting peptide resembling those of higher plants with respect to hydropathy plots and amino acid composition and a hydrophobic signal peptide functioning as a thylakoid-traversing domain. There are indications for alternative sorting of part of the cyanelle cytochrome c6 pool to the periplasmic space. This is the first known bipartite transit sequence of a cyanelle precursor protein from C. paradoxa, a model organism concerning the endosymbiotic origin of plastids. Labeled precursor is efficiently imported into isolated cyanelles, then routed into thylakoids and processed to the mature protein. Hitherto, in vitro protein translocation was not reported for cyanobacterial-type thylakoids.  相似文献   

19.
N Kusumoto  P Sétif  K Brettel  D Seo  H Sakurai 《Biochemistry》1999,38(37):12124-12137
Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons. From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria.  相似文献   

20.
1. The complete amino acid sequence of cytochrome c from the basidiomycete Ustilago sphaerogena was determined from the amino acid compositions and sequences of either tryptic or chymotryptic peptides, and in homology with at least thirty other established sequences of cytochrome c. 2. The primary structure of the molecule bears all of the characteristics of a mammalian-type cytochrome c, showing the typical clustered distribution of hydrophobic and basic residues with a single polypeptide chain of 107 residues. 3. Like all other fungal cytochromes c, it possesses a free N-terminus, and one less residue at the C-terminus than vertebrate cytochromes c. The region of residues 70-80 is strictly conserved, as is histidine at position 18. Position 26 is occupied by an asparagine residue, in contrast to histidine which occurs at this location in most of the known sequences of mammalian-type cytochromes c. 4. In contrast to some other fungal and plant cytochromes c of known primary structures, the Ustilago cytochrome c molecule does not contain trimethyl-lysine. 5. The sequence of Ustilago cytochrome c differs from the sequences of human, horse, chicken, tuna, wheat, and baker's yeast proteins at loci 47, 43, 44, 44 and 38 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号