首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three separate classes of bacterial ice nucleation structures   总被引:4,自引:1,他引:3       下载免费PDF全文
Studies of the properties of the ice nucleation structure exposed on the surfaces of various bacteria such as Pseudomonas syringae, Erwinia herbicola, or various strains of Ice+ recombinant Escherichia coli have shown that there are clearly three major related but chemically distinct types of structures on these cells. First, the ability of Ice+ cells to nucleate super-cooled D2O has been examined, and it has been found that this ability (relative to the ability of the same cells to nucleate super-cooled H2O) exhibited three characteristic nucleating patterns. The rarest structure, called class A, is found on only a small fraction of cells in a culture, nucleates H2O at temperatures above -4.4 degrees C, and is an effective nucleator of super-cooled D2O. A second class of structure, called class B, is found on a larger portion of the cells, nucleates H2O between -4.8 and -5.7 degrees C, and is a relatively poor nucleator of super-cooled D2O. The class C structure is found on almost all cells and nucleates at -7.6 degrees C or colder. These three classes of structures were also differentiated by their sensitivities to low concentrations of water-miscible organic solvents such as dioxane or dimethyl sulfoxide. Depending on the specific bacterial strain, the addition of these solvents to bacterial suspensions lowered the nucleation activity of the class A structure by 1,000-fold or more. The nucleation activities of class B structures in the same culture were highly resistant to these compounds and were lowered only by 20 to 40%. The class C structures were more sensitive than Class B structures were, and the nucleation activities decreased 70 to 90%. Finally, the pH sensitivity of these three classes of structures was examined. The class A structure was destroyed in buffers at pH 4.5 lower but was stable in buffers at higher pHs. The class B structure was less sensitive to acidic buffers but was destroyed at pH 5.5 or lower and was stable at higher pHs. However, the class C structure was unaffected by incubation in buffers with pHs of 3.5 to 9.0. Suggestions for the actual nucleation structures of the three classes are proposed.  相似文献   

2.
The majority of the protein mass of HeLa 40S heterogeneous nuclear ribonucleoprotein monoparticles is composed of multiple copies of six proteins that resolve in SDS gels as three groups of doublet bands (A1, A2; B1, B2; and C1, C2) (Beyer, A. L., M. E. Christensen, B. W. Walker, and W. M. LeStourgeon. 1977. Cell. 11: 127-138). We report here that when 40S monoparticles are exposed briefly to ribonuclease, proteins A1, C1, and C2 are solubilized coincidentally with the loss of most premessenger RNA sequences. The remaining proteins exist as tetramers of (A2)3(B1) or pentamers of (A2)3(B1)(B2). The tetramers may reassociate in highly specific ways to form either of two different structures. In 0.1 M salt approximately 12 tetramers (derived from three or four monoparticles) reassemble to form highly regular structures, which may possess dodecahedral symmetry. These structures sediment at 43S, are 20-22 nm in width, and have a mass near 2.3 million. These structures possess 450-500 bases of slowly labeled RNA, which migrates in gels as fragments 200-220 bases in length. In 9 mM salt the tetramers reassociate to form 2.0 M salt-insoluble helical filaments of indeterminant length with a pitch near 60 nm and diameter near 18 nm. If 40S monoparticles are treated briefly with nuclease-free proteases, the same proteins solubilized by nuclease (A1, C1, and C2) are preferentially cleaved. This protein cleavage is associated with the dissociation of most of the heterogeneous nuclear RNA. Proteins A2 and B1 again reassemble to form uniform, globular particles, but these sediment slightly slower than intact monoparticles. These findings indicate that proteins A1, C1, and C2 and most of the premessenger sequences occupy a peripheral position in intact monoparticles and that their homotypic and heterotypic associations are dependent on protein-RNA interactions. Protein cross-linking studies demonstrate that trimers of A1, A2, and C1 exist as the most easily stabilized homotypic association in 40S particles. This supports the 3:1 ratio (via densitometry) of the A and C proteins to the B proteins and indicates that 40S monoparticles are composed of three or four repeating units, each containing 3(A1),3(A2),1(B1),1(B2),3(C1), and 1(C2).  相似文献   

3.
An improved purification procedure for the carbohydrate-binding proteins (lectins) of cohesive Polysphondylium pallidum cells has been devised. The procedure uses extraction of cells with lactose-containing buffer followed by ammonium sulfate precipitation and affinity chromatography of the redissolved precipitate on a column of acid-treated Sepharose 6B. All hemagglutination activity is adsorbed to the column and recoveries are about 70% of the activity of the starting cell lysate. Sodium dodecyl sulfate-gel electrophoresis of the protein obtained with this procedure resolved three subunits with molecular weights of 26,500 (A), 26,000 (B), and 25,000 (C). Three species are resolved by isoelectric focusing with apparent pI values of 6.4 (I), 7.3 (II), and 7.5 (III) which contain Subunits A, B, and C in the following ratios: I, B:C at 2:1; II, A:B at 2:1, and III, A:B at 1:2. All three isoforms agglutinate rabbit and human type O erythrocytes and are thus isolectins. Isoforms II and III are separated from Isoform I by galactose-gradient elution of the Sepharose 6B column. Isoforms II and III aggregate extensively (nonamers and multiples thereof), but reduction with 2-mercaptoethanol reverses this process yielding a single species of Mr = 73,000 (trimer). Isoform I exists as trimers and hexamers and reduction has no effect on this distribution. Amino acid compositions and tryptic peptide maps of S-[14C]carboxymethyl-isolectins indicate that Subunits A and B are very similar and may represent the same peptide chain, while Subunit C is a peptide quite distinct from A and B.  相似文献   

4.
The six "core" proteins of HeLa cell 40S nuclear ribonucleoprotein particles (hnRNP particles) package 700-nucleotide lengths of pre-mRNA into a repeating array of regular particles. We have previously shown that the C proteins exist as anisotropic tetramers of (C1)3C2 in 40S hnRNP particles and that each particle probably contains three such tetramers. We report here that proteins A2 and B1 also exist in monoparticles as (A2)3B1 tetramers and that each monoparticle contains at least three such tetramers. Proteins A2 and B1 dissociate from isolated monoparticles as a stable tetramer upon nuclease digestion. In low-salt gradients, the tetramers sediment at 6.8S, which is consistent with a mass of 145 kDa. In 200 mM salt, the concentration which dissociates these proteins from RNA, only 4.2S dimers exist in solution. Tetramers of (A2)3B1 possess the ability to package multiples of 700 nucleotides of RNA in vitro into an array of regular, 22.5-nm 43S particles. Unlike the in vitro assembly of intact 40S hnRNP, the (A2)3B1 tetramers assemble by means of a highly cooperative process. These findings indicate that the (A2)3B1 tetramers play a major role in hnRNP assembly and they further support the contention that 40S monoparticles are regular structures composed of three copies of three different tetramers, i.e., 3[(A1)3B2, (A2)3B1, (C1)3C2].  相似文献   

5.

Background

Influenza B and C are single-stranded RNA viruses that cause yearly epidemics and infections. Knowledge of RNA secondary structure generated by influenza B and C will be helpful in further understanding the role of RNA structure in the progression of influenza infection.

Findings

All available protein-coding sequences for influenza B and C were analyzed for regions with high potential for functional RNA secondary structure. On the basis of conserved RNA secondary structure with predicted high thermodynamic stability, putative structures were identified that contain splice sites in segment 8 of influenza B and segments 6 and 7 of influenza C. The sequence in segment 6 also contains three unused AUG start codon sites that are sequestered within a hairpin structure.

Conclusions

When added to previous studies on influenza A, the results suggest that influenza splicing may share common structural strategies for regulation of splicing. In particular, influenza 3′ splice sites are predicted to form secondary structures that can switch conformation to regulate splicing. Thus, these RNA structures present attractive targets for therapeutics aimed at targeting one or the other conformation.  相似文献   

6.
The crystal structure of the light-harvesting protein-pigment complex C-phycocyanin (C-PC) from Mastigocladus laminosus (at 2.1 A resolution (1 A = 0.1 nm] has been refined by energy-restrained least-squares methods to a conventional R-factor of 21.7%. In the same way, the crystal structure of C-PC from Agmenellum quadruplicatum has been refined further (2.5 A, R = 18.4%); pyrrole rings C and D of the chromophore at position A84 have been corrected with respect to the previously reported structure. The two C-PC structures are very similar, 213 C alpha positions have a root-mean-square deviation of 0.49 A. Polar and ionic side-chain interactions are discussed in detail and the two subunits of C-PC from M. laminosus are compared to each other. All three chromophores are completely defined and their tetrapyrroles exhibit very similar geometry. The structure of a C-PC chromophore resembles a cleaved porphyrin which has been twisted roughly 180 degrees around the C-5-C-6 and C-14-C-15 bonds. Accordingly, the configuration/conformation of the chromophores is Z-anti, Z-syn, Z-anti (with the exception of the "configuration" of C-15 of chromophore B155, which is almost midway between Z and E). The three chromophores interact similarly with the protein. They arch around aspartate residues (A87, B87 and B39), and the nitrogens of pyrroles B and C are within hydrogen-bonding distance of one of the carboxylate oxygens. Most of the propionic side-chains of the chromophores form salt bridges with arginine and lysine residues. The updated relative chromophore distances and orientations confirm our conclusion that hexameric aggregates are probably the basic functional units, and that inter-hexameric energy transfer takes place preferentially via the central B84 chromophores.  相似文献   

7.
The membrane structure of the naturally occurring gramicidins A, B, and C was investigated using circular dichroism (CD) spectroscopy and single-channel recording techniques. All three gramicidins form channels with fairly similar properties (Bamberg, E., K. Noda, E. Gross, and P. L?uger. 1976. Biochim. Biophys. Acta. 419:223-228.). When incorporated into lysophosphatidylcholine micelles, however, the CD spectrum of gramicidin B is different from that of gramicidin A or C (cf. Prasad, K. U., T. L. Trapane, D. Busath, G. Szabo, and D. W. Urry. 1983. Int. J. Pept. Protein Res. 22:341-347.). The structural identity of the channels formed by gramicidin B has, therefore, been uncertain. We find that when gramicidins A and B are incorporated into dipalmitoylphosphatidylcholine vesicles, their CD spectra are fairly similar, suggesting that the two channel structures could be similar. In planar bilayers, gramicidins A, B, and C all form hybrid channels with each other. The properties of the hybrid channels are intermediate to those of the symmetric channels, and the appearance rates of the hybrid channels (relative to the symmetric channels) corresponds to what would be predicted if all three gramicidin molecules were to form structurally equivalent channels. These results allow us to interpret the different behavior of channels formed by the three gramicidins solely on the basis of the amino acid substitution at position 11.  相似文献   

8.
To better investigate the relationship between sequence, stability, and folding, the Streptococcus pyogenes collagenous domain CL (Gly-Xaa-Yaa)(79) was divided to create three recombinant triple helix subdomains A, B, and C of almost equal size with distinctive amino acid features: an A domain high in polar residues, a B domain containing the highest concentration of Pro residues, and a very highly charged C domain. Each segment was expressed as a monomer, a linear dimer, and a linear trimer fused with the trimerization domain (V domain) in Escherichia coli. All recombinant proteins studied formed stable triple helical structures, but the stability varied depending on the amino acid sequence in the A, B, and C segments and increased as the triple helix got longer. V-AAA was found to melt at a much lower temperature (31.0 °C) than V-ABC (V-CL), whereas V-BBB melted at almost the same temperature (~36-37 °C). When heat-denatured, the V domain enhanced refolding for all of the constructs; however, the folding rate was affected by their amino acid sequences and became reduced for longer constructs. The folding rates of all the other constructs were lower than that of the natural V-ABC protein. Amino acid substitution mutations at all Pro residues in the C fragment dramatically decreased stability but increased the folding rate. These results indicate that the thermostability of the bacterial collagen is dominated by the most stable domain in the same manner as found with eukaryotic collagens.  相似文献   

9.
A theoretical model for the binding of cis-Pt(NH3)2(+2) to DNA   总被引:1,自引:0,他引:1  
The binding of cis-Pt(NH3)2B1B2 to the bases B1 and B2, i.e., guanine (G), cytosine (C), adenine (A), and thymine (T), of DNA is studied theoretically. The components of the binding are analyzed and a model structure is proposed for the intrastrand binding to the dB1pdB2 sequence of a kinked double helical DNA. Quantum mechanical calculations of the ligand binding energy indicates that cis-Pt(NH3)2(+2) (cis-PDA) binds to N7(G), N3(C), O2(C), O6(G), N3(A), N7(A), O4(T) and O2(T) in order of decreasing binding energy. Conformational analysis provides structures of kinked DNA in which adjacent bases chelate to cis-PDA. Only bending toward the major groove allows the construction of acceptable square planar complexes. Examples are presented for kinks of -70 degrees and -40 degrees at the receptor site to orient the base pairs for ligand binding to B1 and B2 to form a nearly square planar complex. The energies for complex formation of cis-PDA to the various intra-strand base sites in double stranded DNA are estimated. At least 32 kcal/mole separates the energetically favorable dGpdG.cis-PDA chelate from the dCpdG.cis-PDA chelate. All other possible chelate structures are much higher in energy which correlates with their lack of observation in competition with the preferred dGpdG chelate. The second most favorable ligand energy occurs with N3(C). A novel binding site involving dC(N3)pdG(N7) is examined. Denaturation can result in an anti----syn rotation of C about its glycosidic bond to place N3(C) in the major groove for intrastrand binding in duplex DNA. This novel intrastrand dCpdG complex and the most favored dGpdG structure are illustrated with stereographic projections.  相似文献   

10.
Abstract

The monoamine oxidase catalyses the oxidative deamination of neuroactive amines. This enzyme exists in two forms A and B, which differ by substrates preference and inhibitors specificity. Investigation of the structures of these enzymes and design new selective inhibitors are of greatly interesting since MAO A inhibitors are used in therapeutic practice as antidepressants and MAO B inhibitors – in the treatment Parkinson's diseases. The three dimension structures of monoamine oxidases are still unknown. Therefore, one of the most perspective approach to define significant features of structure active site is method based on analysis of structure-activity relationship (3D QSAR) with comparison of molecular fields analysis (CoMFA) allowing to get the spatial distribution of important properties affecting the activity.

In present study we investigate the structures of active sites MAO A and B using 16 pyrazinocarbazole derivatives in variant conformation. Majority of pyrazinocarbazole derivatives have a rigit conformation, but three of those is sufficiently flexible. The latters can be in two conformation types: long molecules (substitution accommodate along axis of main structure) and short molecules (substitution accommodate at acute angle about of main structure). Several 3D QSAR and CoMFA models of MAO A and B active sites were design for data sets containing various types of flexible molecules conformation. All obtained models are statistical reliable and have sufficient predictive power for tested compound tetrindole. The best MAO A model that include two flexible molecules in long conformations was obtained, and the longest one of those in short conformation. In contrast, for MAO B model containing all flexible molecules in the short conformations is more preferred.

On the basis of obtained data the schematic models of MAO A and B active sites structures are proposed. According to these models MAO A active site have the narrow long cavity that accommodate long molecules, while MAO B active site is broader and shorter.  相似文献   

11.
The prevalence of Clostridium difficile and its toxins (A and B) in HIV-positive children in Poland was investigated in a group of 18 children, aged 6 months to 8 1/2 years. Stool samples were tested using an antigen detection method for toxin A/B, cytotoxicity-neutralization and culture. In 3 cases (17%) C. difficile toxins were detected in both stool samples and strains recovered from culture. The three strains isolated were shown by PCR methods to contain toxins A and B genes. All children had been treated previously with antimicrobial and antiviral agents. All three C. difficile-positive children had mild diarrhea that resolved without specific therapy. Further studies involving a large number of children and molecular analyses of isolated C. difficile strains are necessary to determine the frequency and rate of carriage of C. difficile strains among HIV-positive children in Poland.  相似文献   

12.
Cha SY  Yoon HJ  Lee EM  Yoon MH  Hwang JS  Jin BR  Han YS  Kim I 《Gene》2007,392(1-2):206-220
The complete 16,434-bp nucleotide sequence of the mitogenome of the bumble bee, Bombus ignitus (Hymenoptera: Apidae), was determined. The genome contains the base composition and codon usage typical of metazoan mitogenomes. An unusual feature of the B. ignitus mitogenome is the presence of five tRNA-like structures: two each of the tRNALeu(UUR)-like and tRNASer(AGN)-like sequences and one tRNAPhe-like sequence. These tRNA-like sequences have proper folding structures and anticodon sequences, but their functionality in their respective amino acid transfers remained uncertain. Among these sequences, the tRNALeu(UUR)-like sequence and the tRNASer(AGN)-like sequence are seemingly located within the A+T-rich region. This tRNASer(AGN)-like sequence is highly unusual in that its sequence homology is very high compared to the tRNAMet of other insects, including Apis mellifera, but it contains the anticodon ACT, which designates it as tRNASer(AGN). All PCG and rRNAs are conserved in positions observed most frequently in insect mitogenome structures, but the positions of the tRNAs are highly variable, presenting a new arrangement for an insect mitogenome. As a whole, the B. ignitus mitogenome contains the highest A+T content (86.9%) found in any of the complete insects mt sequences determined to date. All protein-coding sequences started with a typical ATN codon. Nine of the 13 PCGs have a complete termination codon (all TAA), but the remaining four genes terminate with the incomplete TA or T. All tRNAs have the typical clover-leaf structures of mt tRNAs, except for tRNASer(AGN), in which the DHU arm forms a simple loop. All anticodons of B. ignitus tRNAs are identical to those of A. mellifera. In the A+T-rich region, a highly conserved sequence block that was previously described in Orthoptera and Diptera was also present. The stem-and-loop structures that may play a role in the initiation of mtDNA replication were also found in this region. Phylogenetic analysis among three corbiculate tribes, represented by Melipona bicolor (Meliponini), A. mellifera (Apini), and B. ignitus (Bombini), showed the closest relationship between M. bicolor and B. ignitus.  相似文献   

13.
Fructose-1,6-(bis)phosphate aldolase is a ubiquitous enzyme that catalyzes the reversible aldol cleavage of fructose-1,6-(bis)phosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceral-dehyde-3-phosphate or glyceraldehyde, respectively. Vertebrate aldolases exist as three isozymes with different tissue distributions and kinetics: aldolase A (muscle and red blood cell), aldolase B (liver, kidney, and small intestine), and aldolase C (brain and neuronal tissue). The structures of human aldolases A and B are known and herein we report the first structure of the human aldolase C, solved by X-ray crystallography at 3.0 A resolution. Structural differences between the isozymes were expected to account for isozyme-specific activity. However, the structures of isozymes A, B, and C are the same in their overall fold and active site structure. The subtle changes observed in active site residues Arg42, Lys146, and Arg303 are insufficient to completely account for the tissue-specific isozymic differences. Consequently, the structural analysis has been extended to the isozyme-specific residues (ISRs), those residues conserved among paralogs. A complete analysis of the ISRs in the context of this structure demonstrates that in several cases an amino acid residue that is conserved among aldolase C orthologs prevents an interaction that occurs in paralogs. In addition, the structure confirms the clustering of ISRs into discrete patches on the surface and reveals the existence in aldolase C of a patch of electronegative residues localized near the C terminus. Together, these structural changes highlight the differences required for the tissue and kinetic specificity among aldolase isozymes.  相似文献   

14.
R A Obar  J Dingus  H Bayley  R B Vallee 《Neuron》1989,3(5):639-645
Three products of the MAP2 gene are known: MAP2A and MAP2B (Mr approximately 200,000) and MAP2C (Mr 70,000). The structural relationship between these MAPs and the basis for their diversity in size are unknown. Previously, we found that a significant fraction of type II cAMP-dependent protein kinase was associated via its regulatory subunits with MAP2A and MAP2B. We now use an antibody prepared against the microtubule binding domain of MAP2A and MAP2B to identify MAP2C. All three forms of MAP2 bound to cAMP affinity columns and reacted with 32P-labeled RII in a blot overlay assay. By assaying proteolytic fragments of MAP2A and MAP2B as well as segments of MAP2 expressed in E. coli, the binding site for RII was localized to an 83 amino acid stretch at the distal (amino-terminal) end of the MAP2 arm domain. Therefore, the microtubule binding and RII binding domains are located at extreme opposite ends of MAP2A and MAP2B, and both are conserved in the much shorter MAP2C.  相似文献   

15.
Energy minimization has been carried out on three poly(purine).poly(pyrimidine) sequences--d(G)10.d(C)10, d(A)10.d(T)10, and d(AG)5.d(CT)5--using the molecular mechanics program AMBER (Assisted Model Building and Energy Refinement). In order to extensively scan the conformational space available, five different helical models were studied, three of them being right-handed helices while the other two were left helical. For all three sequences the right-handed A- and B-type helices are energetically slightly preferred over the left helices, but the energy difference between the various right-handed helices is only marginal. A detailed analysis has been carried out to characterize the local structural variability in the refined structures, both in terms of torsion angles as well as other parameters such as base-pair tilt, wedge roll, and wedge tilt, etc. All three sequences exhibit similar structural features for a particular form, but both the forms A and B show significant deviations from fiber models. In particular, the A-form structures have higher unit rise (2.7 A), and lower unit twist (31 degrees) and base-pair tilt (12 degrees), compared to the fiber model, which has corresponding values of 2.56 A, 32.7 degrees, and 20 degrees, respectively. All these changes indicate that the refined models are closer to the A-form structure observed in crystals of oligonucleotides. In the refined B-for models, the helical parameters are close to the fiber B-form, although the torsion angles show considerable variations. None of the three sequences examined, including the d(A)n.d(T)n sequence, show any pronounced curvature for the B-form structure.  相似文献   

16.
17.
Yeast nuclear RNA polymerases are multisubunit enzymes that contain in common some small subunits. We show that the smallest, a 10-kDa component of three enzymes (A10, B10, and C10), is heterogeneous. In each case, it can be resolved into two distinct polypeptides (alpha and beta) by reverse-phase chromatography. A10 alpha, B10 alpha, and C10 alpha were indistinguishable on the basis of their electrophoretic and chromatographic behaviors, characteristic silver staining, and tryptic peptide analysis. All three polypeptides are blocked at their amino termini. By the same criteria, A10 beta, B10 beta, and C10 beta were also indistinguishable. The amino-terminal sequence of A10 beta and C10 beta corresponded to that of subunit B10 recently cloned by Woychik and Young (Woychik, N. A., and Young, R. A. (1990) J. Biol. Chem. 265, 17816-17819). Thus, the three forms of RNA polymerase share two additional and distinct polypeptides, ABC10 alpha and ABC10 beta, that therefore can be considered bona fide subunits of these enzymes. Interestingly, these two subunits bind zinc.  相似文献   

18.
The 1479-base pair (bp) nucleotide sequence of the serotype 5 M protein gene (smp5) from Streptococcus pyogenes contains three distinct types of tandemly repeated sequences, designated A, B, and C. Repeat A (21 bp x 6, in the 5'-half of smp5), shares no homology with the types 6 or 24 M protein genes (Hollingshead, S. K., Fischetti, V. A., and Scott, J. R. (1986) J. Biol. Chem. 261, 1677-1686; Mouw, A. R., Beachey, E. H., and Burdett, V. (1988) J. Bacteriol., in press). Repeat B (75 bp x 3.6, in the center of smp5) is also present in the M6, but not in the M24 gene. Repeat C (105 bp x 2.7, just distal to the B repeats) shares homology with repeats in both the M6 and M24 genes. All three genes share extensive homology in their 3'-halves and in 5' sequences encoding the N-terminal signal peptides, but between these two regions there are highly variable sequences that are responsible for antigenic diversity. These relationships suggest that both intergenic and intragenic recombination has occurred during the evolution of distinct M protein serotypes. All three M proteins contain conserved hydrophobic and proline-rich sequences at their C-terminal ends, suggestive of a membrane anchor and a peptidoglycan spanning region.  相似文献   

19.
Abstract

We show that the lithium salt of calf-thymus DNA can assume the C structure in nonoriented, hydrated gels. The transitions between the B and C structures showed little hysteresis and none of the metastable structural states which occur in oriented gels. Therefore crystal-lattice forces are not needed to stabilize the C structure.

The occurrence of the alternative structures of the Li, Na and K salts of poly(dA-dC) · poly(dG-dT) was measured as a function of hydration for nonoriented gels. Poly(dA-dC) · poly(dG-dT) · Li exists in the B structure at high hydrations and in the C structure at moderate hydrations with no A or Z structure at any hydration tested. The Na salt of poly(dA-dC) · poly(dG-dT) exists in the B structure at high hydration, as mixtures of B and C at moderate hydrations and in the A structure at lower hydrations. The potassium salt behaves similarly except that mixtures of the C and A structures exist at lower hydrations.

ZnCl2 and NaNO3, which promote the Z structure in duplex poly(dG-dC), promote the C structure in poly(dA-dC) · poly(dG-dT). Information contained in the sequence of base pairs and not specific ionic interactions appear to determine the stability of the alternative structures of polynucleotides as hydration is changed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号