首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Experiments were conducted to determine the influence of dietary levels of vitamin A and alpha-tocopherol on the amounts and composition of retinyl esters in the retinal pigment epithelium of light-adapted albino rats. Groups of rats were fed diets containing alpha-tocopherol and either no retinyl palmitate, adequate retinyl palmitate, or excessive retinyl palmitate. Other groups of rats received diets lacking alpha-tocopherol and containing the same three levels of retinyl palmitate. Retinoic acid was added to diets lacking retinyl palmitate. After 27 weeks, the animals were light-adapted to achieve essentially total visual pigment bleaches, and the neural retinas and retinal pigment epithelium-eyecups were then dissected from each eye for vitamin A ester determinations. Almost all of the retinyl esters were found in the retinal pigment epithelium-eyecup portions of the eyes, mainly as retinyl palmitate and retinyl stearate. Maintaining rats on a vitamin A-deficient, retinoic acid-containing diet led to significant reductions in retinal pigment epithelial retinyl ester levels in rats fed both the vitamin E-supplemented and vitamin E-deficient diets; contrary to expectations, the effect of dietary vitamin A deficiency was more pronounced in the vitamin E-supplemented rats. Vitamin A deficiency in retinoic acid-maintained animals also led to significant reductions in retinyl palmitate-to-stearate ester ratios in the retinal pigment epithelia of both vitamin E-supplemented and vitamin E-deficient rats. Excessive dietary intake of vitamin A had little, if any, effect on retinal pigment epithelial retinyl ester content or composition. Vitamin E deficiency resulted in significant increases in retinal pigment epithelial retinyl palmitate content and in palmitate-to-stearate ester ratios in rats fed all three levels of vitamin A, but had little effect on retinal pigment epithelial retinyl stearate content. In other tissues, vitamin E deficiency has been shown to lower vitamin A levels, and it is widely accepted that this effect is due to autoxidative destruction of vitamin A. The increase in retinal pigment epithelial vitamin A ester levels in response to vitamin E deficiency indicates that vitamin E does not regulate vitamin A levels in this tissue primarily by acting as an antioxidant, but rather may act as an inhibitor of vitamin A uptake and/or storage. The effect of vitamin E on pigment epithelial vitamin A levels may be mediated by the vitamin E-induced change in retinyl palmitate-to-stearate ratios.  相似文献   

2.
A study was conducted to determine whether retinyl phosphate would act as substrate for the enzymatic synthesis of mannosyl retinyl phosphate. Retinyl phosphate, prepared chemically, supported the growth of vitamin A-deficient rats at the same rate as retinol. It also stimulated the uptake of [14C]mannose from GDP-[14C]mannose into total chloroform-methanol extractable lipid. This reaction occurred in the presence of ATP, Mn2+, detergent (Zonyl A), and a membrane-rich enzyme preparation from the livers of vitamin A-deficient rats, provided that a lipid extract of the membrane preparation of alpha-L-lecithin was also added. Total chloroform-methanol-extractable, labeled mannolipid was separated into two principal labeled mannolipids by thin-layer or column chromatography or by differential solvent extraction. The properties of these mannolipids identified them as glycophospholipids: one was identical with authentic synthetic dolichyl mannosyl phosphate, and the other was concluded to be mannosyl retinyl phosphate because of its incorporation of radioactivity from [3H]retinyl phosphate, its rapid hydrolysis by dilute acid, and the formation of substance that cochromatographed with retinol upon its acid hydrolysis. The presence of ATP or GTP was essential for the stimulation of mannolipid synthesis, probably because of their protective action on the substrates against phosphatases present in the crude enzyme fraction. A pH of 6.0-6.2 favored the formation of dolichyl mannosyl phosphate; a higher pH (6.7-7.0) that of mannosyl retinyl phosphate.  相似文献   

3.
Retinyl ester concentrations in plasma from fasting humans, rabbits and rats are usually negligible. In contrast, plasma from fasting dogs contains appreciable amounts of retinyl esters, associated almost entirely with the low-density lipoproteins. This study was undertaken to gather additional information about the nature and origin of canine retinyl ester-containing lipoproteins. We examined the metabolism of endogenous lipoprotein retinyl esters in adult mongrel dogs with moderate vitamin A deficiency. Four animals were fed a diet of oatmeal and tuna fish that provided only 4% of the vitamin A contained in their control rations (15 vs. 367% of the canine recommended daily intake). There was an initial rapid decline in plasma retinyl esters. However, measurable concentrations persisted in plasma for up to 1 year of restricted vitamin A intake. Total plasma retinyl ester concentrations after 6 months of vitamin A deprivation, extrapolated from best-fit monoexponential decay curves for each animal, ranged from 11 to 89% of control, suggesting that there was sustained secretion of retinyl esters from endogenous stores. Density gradient ultracentrifugation of plasma from fasting vitamin A-deprived dogs showed retinyl esters in the very-low- and low-density lipoproteins. After fat and vitamin A feeding retinyl esters appeared among the very-low-, intermediate- and low-density lipoproteins, consistent with the suggestion that chylomicron retinyl esters are first taken up by the liver, and then resecreted as density less than 1.006-1.063 g/ml lipoproteins. Maximal incorporation of dietary retinyl esters into low-density lipoproteins was not reached until 24-48 h. Intermediate-density and beta-migrating low-density lipoprotein retinyl esters were increased markedly in fasting animals maintained on cholesterol- and saturated fat-enriched diets. These observations provide further evidence for the proposal that the canine liver secretes retinyl ester-containing particles, in amounts governed by dietary composition and vitamin A content. What selective advantage this unusual transport pathway might provide is not apparent.  相似文献   

4.
1. Retinyl methyl ether was converted into vitamin A in vitamin A-deficient rats regardless of whether administered by oral, intraperitoneal, intramuscular or subcutaneous route; intramuscular administration seemed to be the best for conversion as well as storage. 2. Significantly, unchanged retinyl methyl ether was also found in the liver after oral administration but not after administration by other routes. 3. Oral administration of 1mg of retinyl methyl ether led to a progressive increase in liver vitamin A with time reaching a value of 16% of administered dose after 24h. No retinyl methyl ether was detectable in liver at any time-interval in this experiment. 4. Conversely, oral administration of 4mg of retinyl methyl ether/day for 4 days led to the accumulation of 25% of the dose as unchanged retinyl methyl ether in the liver 1 day after the last dose; however, it was gradually but completely converted into vitamin A over a period of 18 days. 5. The significance of these findings with special reference to the fundamental metabolism of vitamin A, the site of conversion of retinyl methyl ether into vitamin A, the relative efficiency of various routes of administration and its biological activity are discussed.  相似文献   

5.
A study was conducted on the incorporation of [11-3H]retinyl acetate into various retinyl esters in liver tissues of rats either vitamin A-sufficient, vitamin A-deficient or vitamin A-deficient and maintained on retinoic acid. Further, the metabolism of [11-3H]retinyl acetate to polar metabolites in liver tissues of these three groups of animals was investigated. Retinol metabolites were analyzed by high-performance liquid chromatography. In vitamin A-sufficient rat liver, the incorporation of radioactivity into retinyl palmitate and stearate was observed at 0.25 h after the injection of the label. The label was further detected in retinyl laurate, myristate, palmitoleate, linoleate, pentadecanoate and heptadecanoate 3 h after the injection. The specific radioactivities (dpm/nmol) of all retinyl esters increased with time. However, the rate of increase in the specific radioactivity of retinyl laurate was found to be significantly higher (66-fold) than that of retinyl palmitate 24 h after the injection of the label. 7 days after the injection of the label, the specific radioactivity between different retinyl esters were found to be similar, indicating that newly dosed labelled vitamin A had now mixed uniformly with the endogenous pool of vitamin A in the liver. The esterification of labelled retinol was not detected in liver tissues of vitamin A-deficient or retinoic acid-supplemented rats at any of the time point studied. Among the polar metabolites analyzed, the formation of [3H]retinoic acid from [3H]retinyl acetate was found only in vitamin A-deficient rat liver 24 h after the injection of the label. A new polar metabolite of retinol (RM) was detected in liver of the three groups of animals. The formation of 3H-labelled metabolite RM from [3H]retinyl acetate was not detected until 7 days after the injection of the label in the vitamin A-sufficient rat liver, suggesting that metabolite RM could be derived from a more stable pool of vitamin A.  相似文献   

6.
Fatty acid retinyl esters are the storage form of vitamin A (all-trans-retinol) and serve as metabolic intermediates in the formation of the visual chromophore 11-cis-retinal. Lecithin:retinol acyltransferase (LRAT), the main enzyme responsible for retinyl ester formation, acts by transferring an acyl group from the sn-1 position of phosphatidylcholine to retinol. To define the membrane association and localization of LRAT, we produced an LRAT-specific monoclonal antibody, which we used to study enzyme partition under different experimental conditions. Furthermore, we examined the membrane topology of LRAT through an N-linked glycosylation scanning approach and protease protection assays. We show that LRAT is localized to the membrane of the endoplasmic reticulum (ER) and assumes a single membrane-spanning topology with an N-terminal cytoplasmic/C-terminal luminal orientation. In eukaryotic cells, the C-terminal transmembrane domain is essential for the activity and ER membrane targeting of LRAT. In contrast, the N-terminal hydrophobic region is not required for ER membrane targeting or enzymatic activity, and its amino acid sequence is not conserved in other species examined. We present experimental evidence of the topology and subcellular localization of LRAT, a critical enzyme in vitamin A metabolism.  相似文献   

7.
Vitamin A deficiency has been reported to result in mild structural and functional changes within the small intestine. The objective of this study was to measure the impact of vitamin A deficiency in the rat on several functional aspects of beta-carotene uptake and intestinal retinyl ester hydrolysis. These included uptake of (14)C-beta-carotene by brush border membrane vesicles (BBMV) and in vitro activity of intrinsic retinyl ester hydrolase (REH). Rats (n = 33) were randomly assigned to receive one of three dietary treatments: vitamin A deficient (-VA), vitamin A sufficient pair-fed (PF), or vitamin A sufficient free access-fed (FA). Liver, serum retinol, and growth data were used to verify clinical vitamin A deficiency. Rats in the -VA group were clinically vitamin A deficient by Day 56 on a vitamin A-free diet and, at that point, all rats were randomly assigned to one of two experimental treatments: BBMV studies or REH activity assays. Uptake of (14)C-beta-carotene by BBMV was significantly suppressed (P < 0.05) in -VA rats when compared to both PF and FA control rats during early passive uptake equilibration (10-20 sec). Uptake was also significantly decreased by BBMV isolated from -VA rats compared to PF controls, but not FA controls, after a 10-min incubation (P < 0.05). In vitro activity of REH was not impacted by vitamin A deficiency in rats, although a trend for greater activity from -VA rats was noted. These data suggest that vitamin A deficiency impairs enterocyte membrane uptake of beta-carotene without altering the enzymatic activity of intrinsic REH.  相似文献   

8.
K M Rigtrup  D E Ong 《Biochemistry》1992,31(11):2920-2926
Retinol esterified with long-chain fatty acids is a common dietary source of vitamin A. Hydrolysis of these esters in the lumen of the small intestine is required prior to absorption. Bile salt-stimulated retinyl esterase activity was present with purified rat intestinal brush border membrane, with the maximum rate of ester hydrolysis at approximately pH 8, the physiological luminal pH. Taurocholate, a trihydroxy bile salt, stimulated hydrolysis of short-chain fatty acyl retinyl esters more than hydrolysis of long-chain fatty acyl esters. Deoxycholate, a dihydroxy bile salt, primarily stimulated hydrolysis of long-chain esters. Calculated Kms of 0.74 microM for retinyl palmitate (16:0) hydrolysis and 9.6 microM for retinyl caproate (6:0) hydrolysis suggested the presence of two separate activities. Consistent with that, the activity responsible for retinyl caproate hydrolysis could be inactivated to a greater degree than retinyl palmitate hydrolysis by preincubation of the brush border membrane at 37 degrees C for extended times. Brush border membrane from animals who had undergone common duct ligation 48 h prior to tissue collection showed little ability to hydrolyze retinyl caproate but retained 70% of retinyl palmitate hydrolytic activity, compared to sham-operated controls. Thus, two distinguishable retinyl esterase activities were recovered with purified brush border membranes. One apparently originated from the pancreas, was stimulated by trihydroxy bile salts, and preferentially hydrolyzed short-chain retinyl esters, properties similar to cholesterol ester hydrolase, known to bind to the brush border. The other was intrinsic to the brush border, stimulated by both trihydroxy and dihydroxy bile salts, and preferentially hydrolyzed long-chain retinyl esters, providing the majority of activity of the brush border against dietary retinyl esters.  相似文献   

9.
Highly purified sinusoidal (fat-storing, Kupffer and endothelial cells) and parenchymal cells were isolated to assess the cellular distribution of vitamin A in liver of adult vitamin A-sufficient rats. A modified simple procedure was developed for the purification of fat-storing cells from rat liver. This was achieved by a single centrifugation step in a two-layer density Nycodenz gradient. Endothelial and Kupffer cells were obtained from the same gradient and further purified by centrifugal elutriation. Reverse-phase HPLC analysis showed that fat-storing cells contained about 300-fold the amount of retinyl esters present in parenchymal cells on a mg cell protein basis. In fat-storing cells, the same retinyl esters, viz. retinyl palmitate, retinyl stearate and retinyl oleate, were present as in whole liver. It was also observed that, within 12 h after intravenous injection of chylomicron [3H]retinyl ester, most of the radioactivity had accumulated in the fat-storing cells. It is concluded that fat-storing cells are the main storage sites for vitamin A in rat liver.  相似文献   

10.
Since the yolk lipids of the king penguin (Aptenodytes patagonicus) are rich in n-3 fatty acids, which are potentially susceptible to peroxidative damage, the yolk contents and yolk-to-embryo transfer of antioxidants and lipid-soluble vitamins were investigated under conditions of natural incubation in the wild. The concentration of vitamin E in the unincubated egg was 155 microg/g wet yolk, of which 88% was alpha-tocopherol and the rest was gamma-tocopherol. Vitamin A (2.9 microg/g) was present in the yolk entirely as retinol; no retinyl esters were detected. Throughout the latter half of the incubation period, vitamins E and A were taken up from the yolk into the yolk sac membrane (YSM) and later accumulated in the liver, with vitamin A being transferred in advance of vitamin E. In the YSM, vitamin A was present almost entirely as retinyl ester, indicating that the free retinol of the yolk is rapidly esterified following uptake. Retinyl esters were also the predominant form in the liver. The retinyl esters of the liver and YSM displayed different fatty acid profiles. At hatching, the brain contained relatively little vitamin E (4.7 microg/g) compared to the much higher concentration in the liver (482.9 microg/g) at this stage. Ascorbic acid was not detected in the yolk but was present at a high concentration in the brain at day 27 (404.6 microg/g), decreasing to less than half this value by the time of hatching. This report is the first to delineate the yolk-to-embryo transfer of lipid-soluble vitamins for a free-living avian species. The yolk fatty acids of the king penguin provide an extreme example of potential oxidative susceptibility, forming a basis for comparative studies on embryonic antioxidant requirements among species of birds whose yolk lipids differ in their degree of unsaturation.  相似文献   

11.
The effects of feeding retinoic acid for 2 and 6 days on the metabolism of labeled retinol in tissues of rats maintained on a vitamin A deficient diet was studied. The metabolites of retinol were analyzed by high performance liquid chromatography. Feeding retinoic acid for 2 days significantly reduced the blood retinol and retinyl ester levels without affecting the vitamin A content of the liver. In intestine and testis the content of labeled retinoic acid was decreased significantly by dietary retinoic acid. Addition of retinoic acid to the diet for 6 days resulted, in addition to decreased blood retinol and retinyl ester values, in an increase in the retinyl ester values in the liver. The accumulation of retinyl ester in the retinoic acid fed rat liver was accompanied by an absence of labeled retinoic acid. Kidney tissue was found to contain the highest levels of labeled retinoic acid, retinol, and retinyl esters; dietary retinoic acid did not alter the concentrations of these retinoids in the kidney during the experimental period. Since kidney retained more vitamin A when the liver vitamin A was low and also dietary retinoic acid did not affect the concentrations of radioactive retinoic acid in the kidney, it is suggested that the kidney may play a major role in the production of retinoic acid from retinol in the body.  相似文献   

12.
1. In canines and mustelides total vitamin A was 10-50 times higher compared to other species due to a high amount of retinyl esters (40-99% of total vitamin A) in blood plasma. The dominant vitamin A ester was in most species retinyl stearate. 2. In Ursidae, Procyonidae, Viveridae and Felidae, total vitamin A was much lower. When present, however, retinyl esters also represented 10-65% of total vitamin A in plasma. 3. Only retinol was detected in plasma of the family, Hyaenidae, and the suborder, Pinnipedia. 4. In maned wolf cubs it was found that retinol, retinyl esters and alpha-tocopherol increased with the age of the animals, reaching values comparable to adult animals at the age of 5 months.  相似文献   

13.
To clarify actions of vitamin A on mucosal immunity associated with interleukin-5 (IL-5), we examined effects of vitamin A on mucosal IgA level in IL-5 receptor alpha-chain-knockout (IL-5Ralpha(-/-)) mice. Daily supplementation of retinyl acetate (1 mg/mouse) increased Th2 cytokine levels and a number of their positive cells in the small intestinal mucosa of IL-5Ralpha(-/-) mice, as observed in wild-type or IL-5Ralpha(+/-) mice. Wild-type and heterozygous mice increased the IgA level and a number of IgA-containing cells in the mucosa in response to the vitamin A treatment, but not in IL-5Ralpha(-/-) mice. Retinyl acetate increased anti-cholera toxin (CT) IgA level in the mucosa of wild-type mice, improving their survival rate after an exposure to 0.4 mg of CT. However, retinyl acetate failed to induce resistance to CT toxicity in IL-5Ralpha(-/-) mice. Our results suggest that IL-5 may play an important role in an action of vitamin A on mucosal IgA system.  相似文献   

14.
Chronic dietary administration of 3,3',4,4',5,5'-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA:retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 micrograms), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

15.
Mondal MS  Ruiz A  Hu J  Bok D  Rando RR 《FEBS letters》2001,489(1):14-18
Lecithin retinol acyl transferase (LRAT) is a novel membrane bound enzyme that catalyzes the formation of retinyl esters from vitamin A and lecithin. The enzyme is both essential for vision and for the general mobilization of vitamin A. The sequence of LRAT defines it as a novel enzyme unrelated to any other protein of known function. LRAT possesses a catalytically essential active site cysteine residue. The enzyme also contains six histidine residues. It is shown here that two of these residues (H57 and H163) are essential for catalysis. A mechanistic hypothesis is presented to account for these observations.  相似文献   

16.
17.
Chronic dietary administration of 3,3′,4,4′,5,5′-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA: retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 μg), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

18.
Approximately 80% of the body vitamin A is stored in liver stellate cells with in the lipid droplets as retinyl esters. In low vitamin A status or after liver injury, stellate cells are depleted of the stored retinyl esters by their hydrolysis to retinol. However, the identity of retinyl ester hydrolase(s) expressed in stellate cells is unknown. The expression of carboxylesterase and lipase genes in purified liver cell-types was investigated by real-time PCR. We found that six carboxylesterase and hepatic lipase genes were expressed in hepatocytes. Adipose triglyceride lipase was expressed in Kupffer cells, stellate cells and endothelial cells. Lipoprotein lipase expression was detected in Kupffer cells and stellate cells. As a function of stellate cell activation, expression of adipose triglyceride lipase decreased by twofold and lipoprotein lipase increased by 32-fold suggesting that it may play a role in retinol ester hydrolysis during stellate cell activation.  相似文献   

19.
Tracheal explants derived from vitamin A-deficient rats underwent keratinizine squamous metaplasia in organ culture when grown in serum-free medium. Within 1 d after the addition of 0.1, 2, or 10 microgram retinyl acetate per ml of medium, there was a concentration-dependent increase in the uptake of [3H]glucosamine and [14C]serine into both the total mucous glycoprotein and the principal purified mucin fraction eluted from a DEAE-Sephacel column with 0.2 M NaCl. The stimulation of mucin synthesis continued throughout the 21-d exposure period in a concentration-dependent fashion. It was also found that vitamin A had a greater effect on the incorporation of [3H]glucosamine than on [14C]serine into the secreted mucins, particularly at the higher retinyl acetate concentrations. This result indicated a greater effect of the vitamin on the synthesis of the carbohydrate moiety of the mucins. Morphological analysis by light and electron microscopy demonstrated that the keratinizing squamous epithelium began to revert to a mucus-secreting tissue as early as 24 h after addition of 10 microgram retinyl acetate to the medium. The response was slower with the lower vitamin concentrations. Stereological analysis revealed that the increase in the volume fraction of the Golgi apparatus reached a stable level which could not be altered with continued exposure to retinyl acetate, but that the volume fraction of mucin droplets continually increased and apparently did not reach a maximum in the 21-d exposure period. Conversely, the volume fraction of filament bundles and the number of desmosomes decreased during the vitamin A treatment.  相似文献   

20.
Retinoids (vitamin A and derivatives) are of great commercial potential in cosmetics and pharmaceuticals such as skin care products. However, the clinical effectiveness of these retinoids is limited by skin irritation, water insolubility, and except for retinyl-esters, extreme instability. In this paper, an enzymatic method for preparing water-soluble retinol derivatives catalyzed by immobilized lipase is described. The synthesis is based on a unique strategy of two-step enzymatic acylation. Among the different synthesized compounds, the most water-soluble are the disaccharide derivatives such as saccharose retinyl adipate (nonionic water-soluble retinol derivative) and the sodium salt of retinyl diacids such as retinyl succinate sodium salt (ionic water-soluble retinol derivative).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号