首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersal is a fundamental component of the life history of most species. Dispersal influences fitness, population dynamics, gene flow, genetic drift and population genetic structure. Even small differences in dispersal can alter ecological interactions and trigger an evolutionary cascade. Linking such ecological processes with evolutionary patterns is difficult, but can be carried out in the proper comparative context. Here, we investigate how differences in phoretic dispersal influence the population genetic structure of two different parasites of the same host species. We focus on two species of host‐specific feather lice (Phthiraptera: Ischnocera) that co‐occur on feral rock pigeons (Columba livia). Although these lice are ecologically very similar, “wing lice” (Columbicola columbae) disperse phoretically by “hitchhiking” on pigeon flies (Diptera: Hippoboscidae), while “body lice” (Campanulotes compar) do not. Differences in the phoretic dispersal of these species are thought to underlie observed differences in host specificity, as well as the degree of host–parasite cospeciation. These ecological and macroevolutionary patterns suggest that body lice should exhibit more genetic differentiation than wing lice. We tested this prediction among lice on individual birds and among lice on birds from three pigeon flocks. We found higher levels of genetic differentiation in body lice compared to wing lice at two spatial scales. Our results indicate that differences in phoretic dispersal can explain microevolutionary differences in population genetic structure and are consistent with macroevolutionary differences in the degree of host–parasite cospeciation.  相似文献   

2.
Although most parasites show at least some degree of host specificity, factors governing the evolution of specificity remain poorly understood. Many different groups of host-specific parasites show a striking correlation between parasite and host body size, suggesting that size reinforces specificity. We tested this hypothesis by measuring the relative fitness of host-specific feather lice transferred to pigeons and doves that differ in size by an order of magnitude. To test the general influence of size, we transferred unrelated groups of wing and body lice, which are specialized for different regions of the host. Lice were transferred in both directions, from a large native host species, the rock pigeon (Columba livia), to several progressively smaller hosts, and from a small native host species, the common ground dove (Columbina passerina), to several larger hosts. We measured the relative fitness (population size) of lice transferred to these novel host species after two louse generations. Neither wing lice nor body lice could survive on novel host species that were smaller in size than the native host. However, when host defense (preening behavior) was blocked, both groups survived and reproduced on all novel hosts tested. Thus, host defense interacted with host size to govern the ability of lice to establish on small hosts. Neither wing lice nor body lice could survive on larger hosts, even when preening was blocked. In summary, host size influenced the fitness of both types of feather lice, but through different mechanisms, depending on the direction of the transfer. Our results indicate that host switching is most likely between hosts of similar body size. This finding has important implications for studies of host-parasite coevolution at both the micro- and macroevolutionary scales.  相似文献   

3.
Parasite diversity accounts for most of the biodiversity on earth, and is shaped by many processes (e.g., cospeciation, host switching). To identify the effects of the processes that shape parasite diversity, it is ideal to incorporate both deep (phylogenetic) and shallow (population) perspectives. To this end, we developed a novel workflow to obtain phylogenetic and population genetic data from whole genome sequences of body lice parasitizing New World ground‐doves. Phylogenies from these data showed consistent, highly resolved species‐level relationships for the lice. By comparing the louse and ground‐dove phylogenies, we found that over long‐term evolutionary scales their phylogenies were largely congruent. Many louse lineages (both species and populations) also demonstrated high host‐specificity, suggesting ground‐dove divergence is a primary driver of their parasites’ diversity. However, the few louse taxa that are generalists are structured according to biogeography at the population level. This suggests dispersal among sympatric hosts has some effect on body louse diversity, but over deeper time scales the parasites eventually sort according to host species. Overall, our results demonstrate that multiple factors explain the patterns of diversity in this group of parasites, and that the effects of these factors can vary over different evolutionary scales. The integrative approach we employed was crucial for uncovering these patterns, and should be broadly applicable to other studies.  相似文献   

4.
Some species of parasites occur on a wide range of hosts while others are restricted to one or a few host species. The host specificity of a parasite species is determined, in part, by its ability to disperse between host species. Dispersal limitations can be studied by exploring the genetic structure of parasite populations both within a single species of host and across multiple host species. In this study we examined the genetic structure in the mitochondrial cytochrome oxidase I (COI) gene of two genera of lice (Insecta: Phthiraptera) occurring on multiple sympatric species of doves in southern North and Central America. One genus, Columbicola, is generally less host-specific than the other, Physconelloides. For both genera we identified substantial genetic differentiation between populations of conspecific lice on different host species, generally 10-20% sequence divergence. This level of divergence is in the range of that often observed between species of these two genera. We used nested clade analysis to explore fine scale genetic structure within species of these feather lice. We found that species of Physconelloides exhibited more genetic structure, both among hosts and among geographical localities, than did species of Columbicola. In many cases, single haplotypes within species of Columbicola are distributed on multiple host species. Thus, the population genetic structure of species of Physconelloides reveals evidence of geographical differentiation on top of high host species specificity. Underlying differences in dispersal biology probably explain the differences in population genetic structure that we observed between Columbicola and Physconelloides.  相似文献   

5.
Host defence mediates interspecific competition in ectoparasites   总被引:1,自引:0,他引:1  
1. Interspecific competition influences which, how many and where species coexist in biological communities. Interactions between species in different trophic levels can mediate interspecific competition; e.g. predators are known to reduce competition between prey species by suppressing their population sizes. A parallel phenomenon may take place in host-parasite systems, with host defence mediating competition between parasite species. 2. We experimentally investigated the impact of host defence (preening) on competitive interactions between two species of feather-feeding lice: 'wing' lice Columbicola columbae and 'body' lice Campanulotes compar. Both species are host-specific parasites that co-occur on rock pigeons Columba livia. 3. We show that wing lice and body lice compete and that host defence mediates the magnitude of this competitive interaction. 4. Competition is asymmetrical; wing louse populations are negatively impacted by body lice, but not vice versa. This competitive asymmetry is consistent with the fact that body lice predominate in microhabitats on the host's body that offer the most food and the most space. 5. Our results indicate that host-defence-mediated competition can influence the structure of parasite communities and may play a part in the evolution of parasite diversity.  相似文献   

6.

Background

Repeated adaptive radiations are evident when phenotypic divergence occurs within lineages, but this divergence into different forms is convergent when compared across lineages. Classic examples of such repeated adaptive divergence occur in island (for example, Caribbean Anolis lizards) and lake systems (for example, African cichlids). Host-parasite systems in many respects are analogous to island systems, where host species represent isolated islands for parasites whose life cycle is highly tied to that of their hosts. Thus, host-parasite systems might exhibit interesting cases of repeated adaptive divergence as seen in island and lake systems. The feather lice of birds spend their entire life cycle on the body of the host and occupy distinct microhabitats on the host: head, wing, body and generalist. These microhabitat specialists show pronounced morphological differences corresponding to how they escape from host preening. We tested whether these different microhabitat specialists were a case of repeated adaptive divergence by constructing both morphological and molecular phylogenies for a diversity of avian feather lice, including many examples of head, wing, body and generalist forms.

Results

Morphological and molecular based phylogenies were highly incongruent, which could be explained by rampant convergence in morphology related to microhabitat specialization on the host. In many cases lice from different microhabitat specializations, but from the same group of birds, were sister taxa.

Conclusions

This pattern indicates a process of repeated adaptive divergence of these parasites within host group, but convergence when comparing parasites across host groups. These results suggest that host-parasite systems might be another case in which repeated adaptive radiations could be relatively common, but potentially overlooked, because morphological convergence can obscure evolutionary relationships.  相似文献   

7.
Understanding both sides of host–parasite relationships can provide more complete insights into host and parasite biology in natural systems. For example, phylogenetic and population genetic comparisons between a group of hosts and their closely associated parasites can reveal patterns of host dispersal, interspecies interactions, and population structure that might not be evident from host data alone. These comparisons are also useful for understanding factors that drive host–parasite coevolutionary patterns (e.g., codivergence or host switching) over different periods of time. However, few studies have compared the evolutionary histories between multiple groups of parasites from the same group of hosts at a regional geographic scale. Here, we used genomic data to compare phylogenomic and population genomic patterns of Alaska ptarmigan and grouse species (Aves: Tetraoninae) and two genera of their associated feather lice: Lagopoecus and Goniodes. We used whole‐genome sequencing to obtain hundreds of genes and thousands of single‐nucleotide polymorphisms (SNPs) for the lice and double‐digest restriction‐associated DNA sequences to obtain SNPs from Alaska populations of two species of ptarmigan. We found that both genera of lice have some codivergence with their galliform hosts, but these relationships are primarily characterized by host switching and phylogenetic incongruence. Population structure was also uncorrelated between the hosts and lice. These patterns suggest that grouse, and ptarmigan in particular, share habitats and have likely had historical and ongoing dispersal within Alaska. However, the two genera of lice also have sufficient dissimilarities in the relationships with their hosts to suggest there are other factors, such as differences in louse dispersal ability, that shape the evolutionary patterns with their hosts.  相似文献   

8.
Differences in dispersal abilities have been implicated for causing disparate evolutionary patterns between Columbicola and Physconelloides lice (Insecta: Phthiraptera). However, no study has documented straggling (when lice are found on atypical hosts) rates within these lineages. We used the fact that the Galapagos Hawk, Buteo galapagoensis (Gould) (Falconiformes) feeds on the Galapagos Dove Zenaida galapagoensis Gould (Columbiformes) within an ecologically simplified setting. The Galapagos Dove is the only typical host of Columbicola macrourae (Wilson) and Physconelloides galapagensis (Kellogg and Huwana) in Galapagos. We quantitatively sampled and found these lice on both bird species. A DNA barcoding approach confirmed that stragglers were derived from Galapagos doves. We also collected a Bovicola sp. louse, likely originating from a goat (Capra hircus). On hawks, C. macrourae was significantly more prevalent than P. galapagensis. On doves, the two lice were equally prevalent and abundant. Differences in prevalence on hawks was a function of differences in straggling rate between lice, and not a reflection of their relative representation within the dove population. This provides further evidence that differences in dispersal abilities may drive differences in the degree of cospeciation in Columbicola and Phyconelloides lice, which have become model systems in evolutionary biology.  相似文献   

9.
Phylogenetic congruence is governed by various macroevolutionary events, including cospeciation, host switching, sorting, duplication, and failure to speciate. The relative frequency of these events may be influenced by factors that govern the distribution and abundance of the interacting groups; i.e., ecological factors. If so, it may be possible to predict the degree of phylogenetic congruence between two groups from information about their ecology. Unfortunately, adequate comparative ecological data are not available for many of the systems that have been subjected to cophylogenetic analysis. An exception is provided by chewing lice (Insecta: Phthiraptera), which parasitize birds and mammals. For a few genera of these lice, enough data have now been published to begin exploring the relationship between ecology and congruence. In general, there is a correspondence between important ecological factors and the degree of phylogenetic congruence. Careful comparison of these genera suggests that dispersal is a more fundamental barrier to host switching among related hosts than is establishment. Transfer experiments show that host-specific lice can survive and reproduce on novel hosts that are similar in size to the native host as long as the lice can disperse to these hosts. To date, studies of parasite dispersal have been mainly inferential. A better understanding of the role of dispersal will require more direct data on dispersal frequency and distances.  相似文献   

10.
The louse genera Brueelia (Ischnocera) and Myrsidea (Amblycera) are broadly codistributed on songbirds (Passeriformes), but differ in a variety of life history characteristics. We used mitochondrial and nuclear DNA sequences to assess levels of genetic divergence and reconstruct phylogenies of these 2 genera, focusing especially on Catharus thrushes in North America. We then qualitatively compared the phylogenies and levels of divergence within these 2 genera of codistributed parasites. Neither Brueelia nor Myrsidea appears to cospeciate with Catharus thrushes or passerine birds in general. The Myrsidea phylogeny exhibits significant levels of biogeographic structure, whereas the Brueelia phylogeny does not. Myrsidea and Brueelia also differ in their levels of intra-generic genetic divergence, with Myrsidea showing higher levels of genetic divergence and host specificity than Brueelia. Our genetic data support traditional morphology-based taxonomy in several instances in which the same species of Brueelia has been reported on multiple host taxa, e.g., all migrant Catharus spp. carry B. antiqua, with little haplotype divergence. Myrsidea found on each Catharus sp. are in general genetically distinct, except for M. incerta, which parasitizes both Catharus ustulatus and Catharus minimus. The strong biogeographic signal in the Myrsidea phylogeny and higher relative levels of host specificity of Myrsidea spp. suggest that infrequent host-switching, followed by speciation, is shaping the evolutionary history of this group. In contrast, the relatively lower host specificity of Brueelia spp. suggests that host-switching, combined with more frequent ongoing dispersal, has been more important in the evolutionary history of Brueelia.  相似文献   

11.
The year 1991 marked 100 yr of coevolution research. I have reviewed the first 90 yr of this history. Three chronological phases are apparent: recognition of predictable associations among hosts and their parasites; search for patterns of association and their underlying causes, emphasizing either correlated biogeographic patterns or correlated phylogenies; and development of objective and repeatable methodologies for reconstructing and interpreting these patterns of association. Von Ihering, an outspoken anti-Darwinian, was undoubtedly the first to recognize and make use of predictable host-parasite associations. Kellogg and Fahrenholz, however, had more profound influence on subsequent generations, but in different directions. Kellogg attempted to meld natural selection with speciation by isolation. He also considered host specificity a component of coevolution, important but variable. His work laid the foundation for future research concentrated on biogeographic interpretations of host-parasite relationships. This emphasis and Metcalf's failed attempts to provide adequate mechanisms for reconstructing phylogenies reduced the biogeographic approach to an empirical research program in the hands of Manter. Fahrenholz, on the other hand, exposed to a strong anti-Darwinian sentiment, emphasized the importance of strict host specificity. This led to Eichler's formulation of the first 3 coevolutionary rules and the conclusion that host specificity was not a component but the cause of coevolution and ultimately the tautology inherent in the phylogenetic approach. All had to rely on 1 assumption, that host and parasite phylogenies were reflected in the taxonomic hierarchy. Hennig criticized this assumption and provided a method whereby phylogenies are reconstructed independently. Brooks melded this new phylogenetic method (cladistics) with an equally new biogeographic method (vicariance biogeography), providing the foundations for the modern macroevolutionary approach to studying host-parasite associations.  相似文献   

12.
Host traits, such as migratory behavior, could facilitate the dispersal of disease-causing parasites, potentially leading to the transfer of infections both across geographic areas and between host species. There is, however, little quantitative information on whether variation in such host attributes does indeed affect the evolutionary outcome of host-parasite associations. Here, we employ Leucocytozoon blood parasites of birds, a group of parasites closely related to avian malaria, to study host-parasite coevolution in relation to host behavior using a phylogenetic comparative approach. We reconstruct the molecular phylogenies of both the hosts and parasites and use cophylogenetic tools to assess whether each host-parasite association contributes significantly to the overall congruence between the two phylogenies. We find evidence for a significant fit between host and parasite phylogenies in this system, but show that this is due only to associations between nonmigrant parasites and their hosts. We also show that migrant bird species harbor a greater genetic diversity of parasites compared with nonmigrant species. Taken together, these results suggest that the migratory habits of birds could influence their coevolutionary relationship with their parasites, and that consideration of host traits is important in predicting the outcome of coevolutionary interactions.  相似文献   

13.
Cospeciation generally increases the similarity between host and parasite phylogenies. Incongruence between host and parasite phylogenies has previously been explained in terms of host switching, sorting, and duplication events. Here, we describe an additional process, failure of the parasite to speciate in response to host speciation, that may be important in some host-parasite systems. Failure to speciate is likely to occur when gene flow among parasite populations is much higher than that of their hosts. We reconstructed trees from mitochondrial and nuclear DNA sequences for pigeons and doves (Aves: Columbiformes) and their feather lice in the genus Columbicola (Insecta: Phthiraptera). Although comparisons of the trees from each group revealed a significant amount of cospeciation, there was also a significant degree of incongruence. Cophylogenetic analyses generally indicated that host switching may be an important process in the history of this host-parasite association. Using terminal sister taxon comparisons, we also identified three apparent cases where the host has speciated but the associated parasite has not. In two of these cases of failure to speciate, these comparisons involve allopatric sister taxa of hosts whose lice also occur on hosts sympatric with both of the allopatric sisters. These additional hosts for generalist lice may promote gene flow with lice on the allopatric sister species. Relative rate comparisons for the mitochondrial cytochrome oxidase I gene indicate that molecular substitution occurs about 11 times faster in lice than in their avian hosts.  相似文献   

14.
Information about the population genetic structures of parasites is important for an understanding of parasite transmission pathways and ultimately the co-evolution with their hosts. If parasites cannot disperse independently of their hosts, a parasite's population structure will depend upon the host's spatial distribution. Geographical barriers affecting host dispersal can therefore lead to structured parasite populations. However, how the host's social system affects the genetic structure of parasite populations is largely unknown. We used mitochondrial DNA (mtDNA) to describe the spatio-temporal population structure of a contact-transmitted parasitic wing mite ( Spinturnix bechsteini ) and compared it to that of its social host, the Bechstein's bat ( Myotis bechsteinii ). We observed no genetic differentiation between mites living on different bats within a colony. This suggests that mites can move freely among bats of the same colony. As expected in case of restricted inter-colony dispersal, we observed a strong genetic differentiation of mites among demographically isolated bat colonies. In contrast, we found a strong genetic turnover between years when we investigated the temporal variation of mite haplotypes within colonies. This can be explained with mite dispersal occuring between colonies and bottlenecks of mite populations within colonies. The observed absence of isolation by distance could be the result from genetic drift and/or from mites dispersing even between remote bat colonies, whose members may meet at mating sites in autumn or in hibernacula in winter. Our data show that the population structure of this parasitic wing mite is influenced by its own demography and the peculiar social system of its bat host.  相似文献   

15.
Historically, comparisons of host and parasite phylogenies have concentrated on cospeciation. However, many of these comparisons have demonstrated that the phylogenies of hosts and parasites are seldom completely congruent, suggesting that phenomena other than cospeciation play an important role in the evolution of host-parasite assemblages. Other coevolutionary phenomena, such as host switching, parasite duplication (speciation on the host), sorting (extinction), and failure to speciate can also influence host-parasite assemblages. Using mitochondrial and nuclear protein-coding DNA sequences, I reconstructed the phylogeny of ectoparasitic toucan chewing lice in the Austrophilopterus cancellosus subspecies complex and compared this phylogeny with the phylogeny of the hosts, the Ramphastos toucans, to reconstruct the history of coevolutionary events in this host-parasite assemblage. Three salient findings emerged. First, reconstructions of host and louse phylogenies indicate that they do not branch in parallel, and their cophylogenetic history shows little or no significant cospeciation. Second, members of monophyletic Austrophilopterus toucan louse lineages are not necessarily restricted to monophyletic host lineages. Often, closely related lice are found on more distantly related but sympatric toucan hosts. Third, the geographic distribution of the hosts apparently plays a role in the speciation of these lice. These results suggest that for some louse lineages biogeography may be more important than host associations in structuring louse populations and species, particularly when host life history (e.g., hole nesting) or parasite life history (e.g., phoresis) might promote frequent host switching events between syntopic host species. These findings highlight the importance of integrating biogeographic information into cophylogenetic studies.  相似文献   

16.
Human head lice and body lice are morphologically and biologically similar but have distinct ecologies. They were shown to have almost the same basic genetic content (one gene is absent in head lice), but differentially express certain genes, presumably responsible for the vector competence. They are now believed to be ecotypes of the same species (Pediculus humanus) and based on mitochondrial studies, body lice have been included with head lice in one of three clades of human head lice (Clade A). Here, we tested whether head and body lice collected from the same host belong to the same population by examining highly polymorphic intergenic spacers. This study was performed on lice collected from five homeless persons living in the same shelter in which Clade A lice are prevalent. Lice were individually genotyped at four spacer loci. The genetic identity and diversity of lice from head and body populations were compared for each homeless person. Population genetic structure was tested between lice from the two body regions and between the lice from different host individuals.We found two pairs of head and body lice on the same homeless person with identical multi locus genotypes. No difference in genetic diversity was found between head and body louse populations and no evidence of significant structure between the louse populations was found, even after controlling for a possible effect of the host individual. More surprisingly, no structure was obvious between lice of different homeless persons.We believe that the head and body lice collected from our five subjects belong to the same population and are shared between people living in the same shelter. These findings confirm that head and body lice are two ecotypes of the same species and show the importance of implementing measures to prevent lice transmission between homeless people in shelters.  相似文献   

17.
In parasites that strongly rely on a host for dispersal, geographic barriers that act on the host will simultaneously influence parasite distribution as well. If their association persists over macroevolutionary time it may result in congruent phylogenetic and phylogeographic patterns due to shared geographic histories. Here, we investigated the level of congruent evolutionary history at a regional and global scale in a highly specialised parasite taxon infecting hosts with limited dispersal abilities: the microsporidians Dictyocoela spp. and their amphipod hosts. Dictyocoela can be transmitted both vertically and horizontally and is the most common microsporidian genus occurring in amphipods in Eurasia. However, little is known about its distribution elsewhere. We started by conducting molecular screening to detect microsporidian parasites in endemic amphipod species in New Zealand; based on phylogenetic analyses, we identified nine species‐level microsporidian taxa including six belonging to Dictyocoela. With a distance‐based cophylogenetic analysis at the regional scale, we identified overall congruent phylogenies between Paracalliope, the most common New Zealand freshwater amphipod taxon, and their Dictyocoela parasites. Also, hosts and parasites showed similar phylogeographic patterns suggesting shared biogeographic histories. Similarly, at a global scale, phylogenies of amphipod hosts and their Dictyocoela parasites showed broadly congruent phylogenies. The observed patterns may have resulted from covicariance and/or codispersal, suggesting that the intimate association between amphipods and Dictyocoela may have persisted over macroevolutionary time. We highlight that shared biogeographic histories could play a role in the codiversification of hosts and parasites at a macroevolutionary scale.  相似文献   

18.
A history of cospeciation (synchronous speciation) among ecologically associated, but otherwise distantly related, species is often revealed by a strong correspondence of their phylogenies. In this paper, we present several tests of cospeciation that use maximum-likelihood and Bayesian methods of phylogenetic estimation. The hypotheses tested include: (1) topological agreement of phylogenies for coevolving groups; (2) identical speciation times of associated species; and (3) identical evolutionary rates in genes of associated species. These tests are applied to examine a possible instance of host-parasite coevolution among pocket gophers and lice using mitochondrial COI DNA sequences. The observed differences between gopher and louse trees cannot be explained by sampling error and are consistent with a rate of host switching about one-third the host speciation rate. A subset of the gopher-louse data is consistent with a common history of evolution (i.e., the topologies and speciation times are identical). However, the relative rate of nucleotide substitution is two to four times higher in the lice than in the gophers.  相似文献   

19.
Parasite speciation and host-parasite coevolution should be studied at both macroevolutionary and microevolutionary levels. Studies on a macroevolutionary scale provide an essential framework for understanding the origins of parasite lineages and the patterns of diversification. However, because coevolutionary interactions can be highly divergent across time and space, it is important to quantify and compare the phylogeographic variation in both the host and the parasite throughout their geographical range. Furthermore, to evaluate demographic parameters that are relevant to population genetics structure, such as effective population size and parasite transmission, parasite populations must be studied using neutral genetic markers. Previous emphasis on larger-scale studies means that the connection between microevolutionary and macroevolutionary events is poorly explored. In this article, we focus on the spatial fragmentation of parasites and the population genetics processes behind their diversification in an effort to bridge the micro- and macro-scales.  相似文献   

20.
Little is known about the population genetics of the louse infestations of humans. We used microsatellite DNA to study 11 double infestations, that is, hosts infested with head lice and body lice simultaneously. We tested for population structure on a host, and for population structure among seven hosts that shared sleeping quarters. We also sought evidence of migration among louse populations. Our results showed that: (i) the head and body lice on these individual hosts were two genetically distinct populations; (ii) each host had their own populations of head and body lice that were genetically distinct to those on other hosts; and (iii) lice had migrated from head to head, and from body to body, but not between heads and bodies. Our results indicate that head and body lice are separate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号