首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Psoralens are bifunctional molecules which photoreact with the pyrimidine bases of nucleic acids to form monoadducts and diadducts, or interstrand cross-links. We have prepared psoralen derivatives with additional functional groups which can be specifically directed to chosen biological targets. A sulfhydryl-containing psoralen which can form site-specific cross-links in plasmid DNA has been used to study psoralen repair and mutagenesis. Cloned DNA containing psoralen monoadducts has been cross-linked to specific regions of viral RNA and used to probe virus assembly. A biotinylated psoralen derivative which binds specifically to avidin has been used to detect small amounts of DNA. Finally, a psoralen derivative of insulin has been used to deliver psoralen specifically to activated lymphocytes.  相似文献   

2.
The effect of arachidonic acid (AA) combined with UVA irradiation was studied in a model system mimicking phototherapy PUVA (psoralen+UVA) ex vivo in vitro. The contribution of damage to the plasma membrane by PUVA was tested on human lymphocytes derived from healthy donors. The effect of arachidonic acid (AA) combined with UVA irradiation was compared with that of a psoralen photoadduct to AA added to the culture. The adduct, obtained photochemically and purified, was characterized by NMR and MS spectrometry as a cycloadduct of psoralen to the vinylene bond of the acid (AA<>PSO). The reactions of cultured cells, manifested 20 h after treatment by changes in apoptosis and mitochondrial depolarization, were monitored by flow cytometry by tagging lymphocytes with appropriate fluorescent probes. Treatment of lymphocyte suspension within AA doses from 40 to 100 microM gradually induced a shift from Anx-V(+) (single positive cells) to late apoptotic, Anx-V(+)PI(+) (double positive cells) in a dose dependent manner. The adduct, AAPSO, induced apoptotic changes at a concentration 2-3 times higher than free AA. Combination of psoralen (1 microM ) or arachidonic acid (20-120 microM) with UVA irradiation (2-6 J/cm(2)) accelerated the plasma membrane changes in a synergic way. Preliminary studies indicated that changes in the transmembrane potential of mitochondria paralleled the apoptosis when cells were treated by AA alone. Our findings showed that UVA radiation of lymphocytes in the presence of arachidonic acid, as in the presence of psoralen, enhanced apoptosis of cells in a synergic manner. Thus, PUVA-induced apoptosis may proceed in part by a still undefined signaling pathway(s) triggered in lymphocyte membranes.  相似文献   

3.
Triple helix-forming oligonucleotides may be useful as gene-targeting reagents in vivo, for applications such as gene knockout. One important property of these complexes is their often remarkable stability, as demonstrated in solution and in cells following transfection. Although encouraging, these measurements do not necessarily report triplex stability in cellular compartments that support DNA functions such as replication and mutagenesis. We have devised a shuttle vector plasmid assay that reports the stability of triplexes on DNA that undergoes replication and mutagenesis. The assay is based on plasmids with novel variant supF tRNA genes containing embedded sequences for triplex formation and psoralen cross-linking. Triple helix-forming oligonucleotides were linked to psoralen and used to form triplexes on the plasmids. At various times after introduction into cells, the psoralen was activated by exposure to long wave ultraviolet light (UVA). After time for replication and mutagenesis, progeny plasmids were recovered and the frequency of plasmids with mutations in the supF gene determined. Site-specific mutagenesis by psoralen cross-links was dependent on precise placement of the psoralen by the triple helix-forming oligonucleotide at the time of UVA treatment. The results indicated that both pyrimidine and purine motif triplexes were much less stable on replicated DNA than on DNA in vitro or in total transfected DNA. Incubation of cells with amidoanthraquinone-based triplex stabilizing compounds enhanced the stability of the pyrimidine triplex.  相似文献   

4.
The induction of sister-chromatid exchange (SCE) by a photoactivated monofunctional derivative of psoralen, 3-carbethoxypsoralen (3-CPs) was compared with that of the bifunctional compound, 8-methoxypsoralen (8-MOP). Lymphocytes were exposed in vitro to a series of equimolar concentrations of the drugs as well as to increasing doses of long-wave ultraviolet light (UVA) and second-division metaphases examined for SCE. The drugs or UVA per se did not influence the incidence of SCE. However, combination of the drug and UVA exposure resulted in a dose-dependent increase in SCE and such elevation was less pronounced with 3-CPs as compared to 8-MOP. This difference between 3-CPs and 8-MOP could be due to the difference in the types of lesions induced/repaired in DNA.  相似文献   

5.
Cells from patients with the inherited disorder, Fanconi's anemia (FA), were analyzed for endonucleases which recognize DNA interstrand cross-links and monoadducts produced by psoralen plus UVA irradiation. Two chromatin-associated DNA endonuclease activities, defective in their ability to incise DNA-containing adducts produced by psoralen plus UVA light, have been identified and isolated in nuclei of FA cells. In FA complementation group A (FA-A) cells, one endonuclease activity, pI 4.6, which recognizes psoralen intercalation and interstrand cross-links, has 25% of the activity of the normal human endonuclease, pI 4.6, on 8-methoxypsoralen (8-MOP) plus UVA-damaged DNA. In FA complementation group B (FA-B) cells, a second endonuclease activity, pI 7.6, which recognizes psoralen monoadducts, has 50% and 55% of the activity, respectively, of the corresponding normal endonuclease on 8-MOP or angelicin plus UVA-damaged DNA. Kinetic analysis reveals that both the FA-A endonuclease activity, pI 4.6, and the FA-B endonuclease activity, pI 7.6, have decreased affinity for psoralen plus UVA-damaged DNA. Both the normal and FA endonucleases showed approximately a 2.5-fold increase in activity on psoralen plus UVA-damaged reconstituted nucleosomal DNA compared to damaged non-nucleosomal DNA, indicating that interaction of these FA endonucleases with nucleosomal DNA is not impaired. These deficiencies in two nuclear DNA endonuclease activities from FA-A and FA-B cells correlate with decreased levels of unscheduled DNA synthesis (UDS), in response to 8-MOP or angelicin plus UVA irradiation, in these cells in culture.  相似文献   

6.
G Moroff  S Wagner  L Benade  R Y Dodd 《Blood cells》1992,18(1):43-54; discussion 54-6
A wide variety of viruses are inactivated by psoralen compounds in the presence of ultraviolet A light (UVA). Use of aminomethyltrimethylpsoralen (AMT) and UVA is being evaluated as a method to inactivate viruses that may be present in platelet suspensions prepared for transfusion. Studies have been conducted to assess how variation in various environmental parameters influences the extent of viral inactivation and the retention of platelet properties. Most notably, it was determined that increasing levels of plasma progressively inhibited the inactivation of model viruses. As a result, experiments were routinely conducted at a plasma level of approximately 14.5%, using 40 micrograms/ml AMT, which was determined to be optimal when using this reduced plasma level. The reduced plasma level was achieved by dilution with a nonplasma medium that has been shown to be satisfactory for storage of platelets. Under these conditions, about 5 logs of vesicular stomatitis virus (VSV), pseudorabies, and phi 6 inactivation were achieved. Variation of platelet and leukocyte counts, within normal levels, had a minimal effect on extent of viral inactivation. Although oxygen level (mean levels, 97.9 mm Hg versus 19.2 mm Hg) had only a small influence on viral inactivation with 2.4, 4.8, and 7.2 J/cm2 of UVA (equivalent to 1-3 minutes of exposure), in vitro platelet properties, such as medium pH, morphology characteristics, and aggregation response, were better retained with a longer exposure time at the reduced oxygen level. With normal oxygen (97.9 mm Hg), platelet properties declined substantially relative to untreated controls (no UVA, no AMT) on exposure to 4.8 J/cm2. Our studies have identified two sets of conditions that provide about 5 logs of virus inactivation without extensively altering platelet in vitro properties.  相似文献   

7.
Phototherapy denotes the use of ultraviolet (UV) light in the management of several dermatoses. Most phototherapy regimens utilize ultraviolet radiation of different wavelenghts. Currently, irradiations with broadband UVB (290-320 nm), narrowband UVB (311-313 nm), 308 nm excimer laser, UVA 1 (340-400 nm), UVA with psoralen (PUVA), and extracorporeal photochemotherapy (photopheresis) are being used. The interplay of the various photobiologic pathways is far from being completely understood. Disordes that may benefit from such approach are numerous, with psoriasis, atopic dermatitis, cutaneous T-cell lymphomas, morphea, and vitiligo as main indications. The immunomodulatory effects of UVB radiation primarily affect the epidermis and superficial dermis, while UVA radiation affects mid and deep dermal components, especially blood vessels. UVB radiation is absorbed by endogenous chromophores, such as nuclear DNA, which initiates a cascade of events. Absorption of UV light by nucleotides causes the formation of DNA photoproducts and suppresses DNA synthesis. In addition UV light stimulates synthesis of prostaglandins and cytokines that play important roles in immune suppression. It may reduce the number of Langerhans cells, cutaneous T lymphocytes and mast cells in the dermis. UV radiation can also affect extranuclear molecular targets located in the cytoplasm and cell membrane. Immune suppression, alteration in cytokine expression, and cell cycle arrest may all contribute to the suppression of disease activity. PUVA is a form of chemophototherapy which uses UVA light to activate chemicals known as psoralens, hence psoralen ultraviolet A. The conjunction of psoralens with epidermal DNA inhibits DNA replication and causes cell cycle arrest. Psoralen photosensitization also causes an alteration in the expression of cytokines and cytokine receptors. Psoralens interact with RNA, proteins and other cellular components and indirectly modify proteins and lipids via singlet oxygen-mediated reactions or by generating of free radicals. Infiltrating lymphocytes are strongly suppressed by PUVA, with variable effects on different T-cell subsets. Psoralens and UV radiation also stimulate melanogenesis. Extracorporeal photopheresis is technique used in treatment of erythrodermic cutaneous lymphomas. It is very potent in induction of lymphocyte apoptosis. Despite the introduction of numerous effective systemic medications and biologic agents in dermatology, phototherapy remains a reliable, and often preferred option for several dermatoses.  相似文献   

8.
Repair of 8-methoxypsoralen monoadducts in mouse lymphoma cells   总被引:1,自引:0,他引:1  
Studies of the repair of DNA lesions at biologically important doses is extremely difficult for most mutagens. With 8-methoxypsoralen (8-MOP) plus longwave ultraviolet light (UVA) as the lesion-inducing agent, however, it is easy to manipulate the relative frequency of different DNA adducts by means of a special experimental protocol (the tap-and-test protocol) and this can be used to measure repair of DNA adducts. Three classes of photoadducts are produced by 8-MOP plus UVA treatment: 3,4-cyclobutane monoadducts, 4',5'-cyclobutane monoadducts, and 8-MOP-DNA interstrand crosslinks. A monoadduct is formed when a photoactivated 8-MOP molecule reacts with a pyrimidine base. An 8-MOP-DNA interstrand crosslink is formed when an existing monoadduct is photoactivated to react with another pyrimidine base on the opposite DNA strand. Thus monoadducts are formed by absorption of one photon of light and crosslinks by absorption of two. In the tap-and-test experiments, cells were exposed to UVA in the presence of 8-MOP and then re-exposed to UVA in the absence of free 8-MOP so that only crosslinks can be produced by the second UVA treatment. By means of this technique we have previously shown that DNA crosslinks are much more effective than monoadducts at producing chromosomal damage (sister-chromatid exchanges and micronuclei) but not mutations (Liu-Lee et al., 1984). If L5178Y mouse lymphoma cells were able to remove monoadducts, incubation prior to the second UVA treatment should lead to decreases in the effect of re-irradiation, because fewer monoadducts would be available for crosslink formation. In this way, we have found that psoralen monoadducts are repaired in these cells and that about 70% of those capable of crosslink formation are removed or otherwise made unavailable for crosslink formation in 6 h.  相似文献   

9.
10.
Phototherapy and photopharmacology   总被引:1,自引:0,他引:1  
The activation of 8-methoxypsoralen (8-MOP) by long-wavelength ultraviolet A light (UVA, 320-400 nm) induces the formation of interstrand cross-links in DNA. Psoralen plus UVA (PUVA) is widely used in the treatment of psoriasis, a hyperproliferative disease of the skin. A new psoralen plus UVA therapy has been developed in which the 8-MOP-containing blood of cutaneous T cell lymphoma (CTCL) patients is irradiated with UVA light extracorporeally (i.e., extracorporeal photopheresis). The first group of patients had the leukemic variant of CTCL. A regimen of two treatments on successive days at monthly intervals produced a clinical response in eight of 11 patients. In this review the properties of several psoralens (both naturally occurring and synthetic derivatives) are compared, using several assays (DNA cross-linking, inhibition of lymphocyte response to mitogen stimulation, and cell viability). The development of a panel of monoclonal antibodies that recognize 8-MOP-modified DNA is also described. These antibodies have been used to quantitate 8-MOP photoadduct levels in human DNA samples. In addition to the psoralens, the light activation of two other compounds, gilvocarcin and an insulin-psoralen conjugate, is described.  相似文献   

11.
H J Deeg  K Erickson  R Storb  K M Sullivan 《Blood cells》1992,18(1):151-61; discussion 161-2
Ultraviolet (UV) irradiation affects eukaryotic cells in numerous ways. Exposure of blood transfusion products to UVC (200-280 nm) or UVB (280-320 nm) reduces or abrogates their immunogenicity and thereby prevents allosensitization and transfusion refractoriness in several models. Although the exact mechanism is not known, in vitro studies suggest that UV exposure results in a loss of class II histocompatibility antigens from the cell surface, alterations of calcium homeostasis, and a lack of interaction between antigen presenting and responding cells. In the UVB and UVA (320-400 nm) range, lymphocytes appear to be more sensitive than hemopoietic cells. In murine transplant models, UVB irradiation of spleen and marrow cells can be used to prevent the development of graft-versus-host disease while allowing for complete hemopoietic reconstitution. Furthermore, in clinical marrow transplantation, pilot studies of UVA in conjunction with psoralen administration have yielded encouraging results in patients with steroid refractory graft-versus-host disease of the skin. Thus, UV irradiation provides an interesting tool to study cell/cell and donor/host interactions and may have some applications in transfusion medicine and bone marrow transplantation.  相似文献   

12.
DNA endonuclease activities from the chromatin of normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells were examined on DNA treated with 8-methoxypsoralen (8-MOP) or 4,5',8-trimethylpsoralen (TMP) plus long wavelength ultraviolet (UVA) light, which produce monoadducts and DNA interstrand cross-links, and angelicin plus UVA light, which produces mainly monoadducts. 9 chromatin-associated DNA endonuclease activities were isolated from normal and XPA cells and assayed for activity on PM2 bacteriophage DNA that had been treated with 8-MOP or TMP in the dark and then exposed to UVA light. Unbound psoralen was removed by dialysis and a second dose of UVA light was given. Cross-linking of DNA molecules was confirmed by alkaline gel electrophoresis. In both normal and XPA cells, two DNA endonuclease activities were found which were active on 8-MOP and TMP plus UVA light treated DNA. One of these endonuclease activities, pI 4.6, is also active on intercalated DNA and a second one, pI 7.6, is also active on UVC (254 nm) light irradiated DNA. The major activity against angelicin plus UVA light treated DNA in both normal and XPA cells was found in the fraction, pI 7.6. The levels of activity of both of these fractions on all 3 psoralen-damaged DNAs were similar between normal and XPA cells. These results indicate that in both normal and XPA cells there are at least two different DNA endonucleases which act on both 8-MOP and TMP plus UVA light treated DNA.  相似文献   

13.
B Hang  A T Yeung    M W Lambert 《Nucleic acids research》1993,21(18):4187-4192
A DNA binding protein with specificity for DNA containing interstrand cross-links induced by 4,5',8-trimethylpsoralen (TMP) plus long wavelength ultraviolet (UVA) light has been identified in normal human chromatin. Protein binding to DNA was determined using a gel mobility shift assay and an oligonucleotide containing a hot spot for formation of psoralen interstrand cross-links. Specificity of the damage-recognition protein for cross-links was demonstrated both by a positive correlation between level of cross-link formation in DNA and extent of protein binding and by effective competition by treated but not undamaged DNA for the binding protein. Chromatin protein extracts from cells from individuals with the genetic disorder, Fanconi anemia, complementation group A (FA-A), which have decreased ability to repair damage produced by TMP plus UVA light, failed to show any protein binding to TMP plus UVA treated DNA. We have previously shown that these chromatin protein extracts contain a DNA endonuclease complex, pI 4.6, which specifically recognizes and incises DNA containing interstrand cross-links and which in FA-A cells is defective in its ability to incise this damaged DNA (Lambert et al. (1992) Mutation Res., 273, 57-71). Together, these findings suggest that the DNA binding protein identified is involved in recognition and repair of DNA interstrand cross-links.  相似文献   

14.
We have investigated some biological consequences of light-induced psoralen-deoxyribonucleic acid (DNA) adducts and find that for several Escherichia coli functions (killing of strain AB2480 recA13 uvrA6, inactivation of phage lambda plaque-forming ability in wild type and uvrA6 hosts, loss of ability to transmit intact Flac(+) episomes), a light exposure sufficient for production of a single cross-link per DNA molecule correlates well with the biological consequence. Although one cross-link per genome is apparently lethal to recA13 uvr(-) strains, mutants carrying the recA13 or uvrA6 markers survive light exposures producing 6.7 and 16 cross-links per genome, respectively, and wild-type cells recover from 65 psoralen cross-links. Evidently, the excision and recombinational repair systems complement one another in reconstructing an intact genome from cellular DNA containing psoralen photoproducts. The above bacterial and phage strains, in which DNA repair processes are minimized, are also extremely sensitive to pyrimidine dimer-forming 254-nm UV light (without psoralen), and were expected to respond similarly to formation of psoralen-pyrimidine base monoadducts in their DNA. Since the biological inactivation by psoralen correlates well with cross-link formation, we suggest that the sensitizing action of this drug primarily derives from its ability to form DNA cross-links.  相似文献   

15.
Formation of crosslinks in DNA by three bifunctional psoralen derivatives plus UVA light in mouse embryo fibroblasts was evaluated by a NaI density gradient centrifugation method. Psoralen was shown to be a more active cross-linking agent than 8-methoxypsoralen. As for 4,5',8-trimethylpsoralen, it needed much lower concentrations and much less 365 nm light fluence to yield high percentages of crosslinked DNA. Repair of adducts formed by these psoralen derivatives was studied by splitting the irradiation dose into two equal parts separated by variously long dark repair periods. It was shown that essentially only monoadducts formed during the first irradiation period were repaired. These mouse embryo fibroblasts seem unable to repair interstrand DNA crosslinks.  相似文献   

16.
Real-time fluorescence detection systems were adapted to identify DNA adducts formed by photogenotoxic phytochemicals. Two assays were developed: the first was based on quantitative polymerase chain reaction (qPCR) while the second used thermal denaturation and renaturation (D-R). Both assays employed yeast DNA, the fluorescent dye SYBR Green and a real-time PCR thermocycler. The furanocoumarins 8-methoxypsoralen (8-MOP), 5-methoxypsoralen (5-MOP), psoralen, angelicin and imperatorin, and the furanochrome khellin, were tested for adduct forming ability with up to 2 h of UVA light exposure (lambda = 320-400 nm). The known bifunctional compounds, 8-MOP, 5-MOP and psoralen, were inferred to form biadducts here based on both D-R and qPCR assays, as expected from previous research. The known monofunctional compound angelicin was used as a negative control and did not form biadducts based on either assay. Two compounds of unknown functional specificity, imperatorin and khellin, were determined to be positive and negative for biadduct activity, respectively. Detection of biadducts with 8-MOP, 5-MOP, psoralen and imperatorin, but not angelicin or khellin, was further verified by temperature gradient gel electrophoresis. The fluorescence methods improve and expand upon existing assays to monitor DNA adducts.  相似文献   

17.
18.
The molecular response mechanisms and signalling pathways activated upon exposure to ultraviolet (UV) radiation have been extensively studied within the last two decades. Although many signalling pathways can be activated by both UVA as well as UVB, there are several distinctions indicating wavelength-specific response patterns accommodated by the terms UVA response and UVB response. Given that human skin is primarily exposed to UV light from solar radiation consisting of both UVA and UVB, we sought to explore a potential interaction between the distinct UVA and UVB responses at the level of MAPK. Our results indicate that the two distinct stress responses elicited by UVA or UVB interact with each other, producing a "third" response that is different from either alone and cannot be explained by a simple addition of effects.  相似文献   

19.
UV irradiation has been shown to activate the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) in cell culture; however, only limited studies have been described in vivo. UV light has been categorized as UV-A (400 to 315 nm), -B (315 to 280 nm), or -C (less than 280 nm); the longer wavelengths are less harmful but more penetrative. Highly penetrative UV-A radiation constitutes the vast majority of UV sunlight reaching the earth's surface but is normally harmless. UV-B irradiation is more harmful but less prevalent than UV-A. In this report, the HIV-1 LTR-luciferase gene in the skin of transgenic mice was markedly activated when exposed to UV-B irradiation. The LTR in the skin of transgenic mice pretreated topically with a photosensitizing agent (psoralen) was also activated to similar levels when exposed to UV-A light. A 2-h exposure to sunlight activated the LTR in skin treated with psoralen, whereas the LTR in skin not treated with psoralen was activated after 7 h of sunlight exposure. The HIV-1 LTR-beta-galactosidase reporter gene was preferentially activated by UV-B irradiation in a small population of epidermal cells. The transgenic mouse models carrying HIV-1 LTR-luciferase and LTR-beta-galactosidase reporter genes have been used to demonstrate the in vivo UV-induced activation of the LTR and might be used to evaluate other environmental factors or pharmacologic substances that might potentially activate the HIV-1 LTR in vivo.  相似文献   

20.
Amammalian cell line, J774, was susceptible to both synthetic and natural photosensitising agents after irradiation with long-wave ultraviolet light. Both UV-A light and psoralen did not affect cell growth individually; a reduction invisual confluency was achieved only when psoralen and UV-A light were used in combination. The maximum visual confluency decreased by 55% when 50 ppm psoralen was added to a growing culture and irradiated with UV light for 3 min. Decreasing the UV-A exposure times from 3min to 3 s did not greatly affect the maximum total visual confluence reached using different synthetic psoralen concentrations, but did affect the rate at which cell death occurred. The 3 min exposure time resulted in a rapid decrease in cell numbers in comparison to 3s exposure time. Synthetic psoralen was found to have an increasing photosensitising activity with increasing concentration using a logarithmic shift between 0.5 ppm and 50 ppm. A visual confluency of 45 % was achieved using concentrations of 50 ppm psoralen, and 70% visual confluency using 0.5 ppm. Natural mixtures of furanocoumarins containing psoralens, obtained from two separate parsley sources, were found to have greater efficacy at inhibiting the growth cycle of the cells when compared to the synthetic psoralen. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号