首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic lipid/DNA-complexes have been widely used as gene transfer vectors because they are less toxic and immunogenic than viral vectors. The aim of the present study was to improve and characterize lipofection of an insulin-producing cell line. We compared the transfection efficiency of seven commercially available lipid formulations (Lipotaxi, SuperFect, Fugene, TransFast, Dosper, GenePORTER and LipofectAMINE) by flow cytometry analysis of GFP-expression. In addition, we have determined the influences of centrifugation, serum and a nuclear localization signal peptide on the lipofection efficiency. We observed that two lipid formulations, GenePORTER and LipofectAMINE, were able to promote efficient gene transfer in RINm5F cells. However, GenePORTER exhibited the important advantage of being able to transfect cells in the presence of serum and with less cytotoxicity than LipofectAMINE. LipofectAMINE-induced RINm5F cell death could partially be counteracted by TPA, forskolin or fumonisin β1. Finally, both centrifugation and a nuclear localization signal peptide increased transfection efficiency.  相似文献   

2.
We constructed multimers of the TAT-(47-57) peptide. This polycationic peptide is known to be a protein and particle transduction domain and at the same time to comprise a nuclear localization function. Here we show that oligomers of the TAT-(47-57) peptide compact plasmid DNA to nanometric particles and stabilize DNA toward nuclease degradation. At optimized vector compositions, these peptides mediated gene delivery to cells in culture 6-8-fold more efficiently than poly-L-arginine or the mutant TAT(2)-M1. When DNA was precompacted with TAT peptides and polyethyleneimine (PEI), Superfect, or LipofectAMINE was added, transfection efficiency was enhanced up to 390-fold compared with the standard vectors. As early as after 4 h of transfection, reporter gene expression mediated by TAT-containing complexes was higher than the 24-h transfection level achieved with a standard PEI transfection. When cells were cell cycle-arrested by serum starvation or aphidicolin, TAT-mediated transfection was 3-fold more efficient than a standard PEI transfection in proliferating cells. In primary nasal epithelial cells and upon intratracheal instillation in vivo, TAT-containing complexes were superior to standard PEI vectors. These data together with confocal imaging of TAT-DNA complexes in cells support the hypothesis that the TAT nuclear localization sequence function is involved in enhancing gene transfer.  相似文献   

3.

Background

Non-viral vectors for gene transfer are less immunogenic than viral vectors but also less efficient. Significant effort has focused on enhancing non-viral gene transfer efficiency by increasing nuclear import of plasmid DNA, particularly by coupling nuclear localization peptidic sequences to plasmid DNA.

Results

We have coupled a 62-aminoacid peptide derived from hSRP1α importin beta binding domain, called the IBB peptide to plasmid DNA by using the heterobifunctional linker N-(4-azido-2,3,5,6 tetrafluorobenzyl)-6-maleimidyl hexanamide (TFPAM-6). When covalently coupled to plasmid DNA, IBB peptide did not increase the efficiency of cationic lipid mediated transfection. The IBB peptide was still able to interact with its nuclear import receptor, importin β, but non-specifically. However, we observed a 20-fold increase in reporter gene expression with plasmid DNA / IBB peptide complexes under conditions of inefficient transfection. In which case, IBB was associated with plasmid DNA through self assembling ionic interaction.

Conclusions

The improvement of transfection activity was not due to an improved nuclear import of DNA, but rather by the modification of physicochemical properties of IBB peptide / plasmid complexes. IBB peptide increased lipoplex size and these larger complexes were more efficient for gene transfer.
  相似文献   

4.
Lipid vesicles are potentially useful as microcapsules for drug and/or gene delivery. We developed cationic lipid vesicles consisting mainly of sorbitan monooleate (Span 80) and cationic peptide lipid (CPL), and evaluated the CPL vesicles as gene transfection vectors. The optimum CPL concentration for gene transfection into HeLa cells was found to be 20 wt % of total lipid, and such CPL vesicles did not exhibit significant cytotoxicity. Co-culture of Poly-L-lysine and plasmids prior to making CPL vesicle-plasmid complexes was effective. Lipofection using LipofectAMINE was suppressed in 10% serum-supplemented medium. The transfection efficiency of 20 wt % CPL vesicles, however, was not affected by serum in the medium when plasmids were treated with poly-L-lysine.  相似文献   

5.
Cardiomyocytes are terminally differentiated cells that to date have been characterized as poor targets for nonviral gene transfer. This study was therefore designed to determine the optimal nonviral gene transfer parameters in cell cultures of neonatal rat cardiomyocytes and to compare them with the efficiency of gene transfer using adeno-associated viral vectors (AAV). Transfection efficiency was measured by quantitative chloramphenicol acetyltransferase type I (CAT)-enzyme-linked immunosorbent assay and β-galactosidase staining, based on overexpression of reporter genes (CAT and LacZ). The efficiency of CAT/LacZ overexpression was assessed using the following techniques: (1) liposomal reagents, such as: FuGENE 6, LipofectAMINE 2000, LipofectAMINE PLUS, GenePORTER, Metafectene, and LipoGen; (2) electroporation and nucleofector techniques; and (3) an AAV2 vector harboring a lacZ reporter gene. Toxicity was monitored by total protein measurement and by analyzing cell metabolism. On average, Lipofectamine 2000 was the most effective nonviral method examined yielding consistently high transfection rates (8.1% β-galactosidase-positive cells) combined with low toxicity. Electroporation also resulted in high transfection values (7.5%); however, cellular toxicity was higher than that of Lipofectamine 2000. Finally, transduction with AAV2 vectors provided the highest levels of transduction (88.1%) with no cellular toxicity. We conclude that although transduction with AAV is more efficient (88.1%), transfections with nonviral techniques, when optimized, may provide a useful alternative for overexpression of therapeutic genes in neonatal cardiomyocytes.  相似文献   

6.
A series of cationic liposomes known as cationic phosphonolipids (CPs) were evaluated as vehicles for in vitro gene transfer in K562 erythroleukemia cells and 5637 epithelial carcinoma cells. For each CP and target cell type examined, detailed analyses were performed to determine optimal transfection conditions (lipid/ DNA (+/-) charge ratio, amount of complexed episomal DNA, liposomal and lipoplex size, complexation medium and duration of complex-cell exposure time). Lipofection conditions were determined to be both cell- and lipid-type specific. Complexation medium critically affected transfection competence. The initial size of the liposome was not always predictive of lipofection potency. The lipid chemical composition had a strong impact upon lipofection efficiency; DOPE inclusion in the liposome formulations was found to affect the levels of transgene expression in a cell-dependent way. Notably, effective transgene expression was characterized by prominent plasmid nuclear incorporation. Human A gamma- and epsilon-globin transgene nuclear incorporation and expression in 5637 cells post GLB.391-mediated lipofection lends credence to its use as a vehicle of therapeutic transgene delivery.  相似文献   

7.
Embryonal carcinoma (EC) cells are recognized as an excellent model system for studying the early stages of mammalian development. Many studies performed with EC cells involve transient transfection with promoter/reporter gene constructs and/or mammalian expression vectors. One of the limitations of working with EC cells is their inability to be transfected at high efficiency. In most cases, EC cells are transfected using the calcium phosphate method. The objective of this study was to identify protocols and culture conditions that significantly increase the transfection efficiency of EC cells. F9 EC cells were used for this purpose, because they are the EC cell line studied most commonly. We show that the transfection efficiency of F9 EC cells using the calcium phosphate method is less than 5%; whereas, their transfection efficiency can be improved approximately 15-fold using optimized culture conditions and liposome-based transfection reagents. Specifically, we demonstrate that more than 50% of F9 EC cells can be transfected using LipofectAMINE 2000. In addition to higher levels of transfection, there is much less plate-to-plate variation with liposome-based reagents as compared to transfection with calcium phosphate. Interestingly, transfection efficiency using these reagents was found to be inversely related to cell density. This contrasts sharply with the recommendation that transfection with LipofectAMINE 2000 or LipofectAMINE in conjunction with the PLUS reagent be performed at high cell densities. Given the improvements in transfection efficiency reported here, it will now be possible to perform studies with F9 EC cells that require transfection at significantly higher levels than that achieved using the calcium phosphate method. Overall, the highest transfection efficiencies were consistently obtained using LipofectAMINE 2000.  相似文献   

8.
At present, nonviral gene vectors develop rapidly, especially cationic polymers. A series of bioreducible poly(amide amine) (PAA) polymers containing guanidino groups have been synthesized by our research team. These novel polymer vectors demonstrated significantly higher transfection efficiency and lower cytotoxicity than polyethylenimine (PEI)—25kDa. However, compared with viral gene vectors, relatively low transfection efficiency, and high cytotoxicity are still critical problems confronting these polymers. In this study, poly(agmatine/N,N′-cystamine-bis-acrylamide) p(AGM-CBA) was selected as a model polymer, nuclear localization signal (NLS) peptide PV7 (PKKKRKV) with good biocompatibility and nuclear localization effect was introduced to investigate its impact on transfection efficiency and cytotoxicity. NLS peptide-mediated in vitro transfection was performed in NIH 3T3 cells by directly incorporating NLS peptide with the complexes of p(AGM-CBA)/pDNA. Meanwhile, the transfection efficiency and cytotoxicity of these complexes were evaluated. The results showed that the transfection efficiency could be increased by 5.7 times under the appropriate proportion, and the cytotoxicity brought by the polymer vector could be significantly reduced.  相似文献   

9.
BACKGROUND: To develop more efficient non-viral vectors, we have previously described a novel approach to attach a nuclear localisation signal (NLS) to plasmid DNA, by generating a fusion protein between the tetracycline repressor protein TetR and an SV40 NLS peptide (TetR-NLS). The high affinity of TetR for the DNA sequence tetO is used to bind the NLS to DNA. We have now investigated the ability of this system displaying the SV40 NLS or HIV-1 TAT peptide to enhance nuclear import of a minimised DNA construct more suitable for in vivo gene delivery: a minicircle. METHODS: We have produced a new LacZ minicircle compatible with the TetR system. After transfection of the minicircle in combination with TetR-NLS or TetR-TAT using different transfection agents, we first measured beta-galactosidase activity in vitro. We then used a special delivery technique, in which DOTAP/cholesterol liposomes and DNA/protein complexes are sequentially injected intravenously, to evaluate the activity of this system in vivo. RESULTS: In vitro results showed a 30-fold increase in transfection efficiency of the nuclear-targeted minicircle compared to normal plasmid lipofection. Results on cell cycle arrested cells seem to indicate a different mechanism between the TetR-NLS and TetR-TAT. Finally, we demonstrate a more than 6-fold increase in beta-galactosidase expression in the mouse lung using the minicircle and the TetR-TAT protein. This increase is specific for the peptide sequence and is not observed with the control protein TetR. CONCLUSIONS: Our results indicate that the combination of a minicircle DNA construct with a TetR nuclear-targeting system is able to potentiate gene expression of non-viral vectors.  相似文献   

10.
Lipoplex size determines lipofection efficiency with or without serum   总被引:5,自引:0,他引:5  
In order to identify factors affecting cationic liposome-mediated gene transfer, the relationships were examined among cationic liposome/DNA complex (lipoplex)-cell interactions, lipoplex size and lipoplex-mediated transfection (lipofection) efficiency. It was found that lipofection efficiency was determined mainly by lipoplex size, but not by the extent of lipoplex-cell interactions including binding, uptake or fusion. In addition, it was found that serum affected mainly lipoplex size, but not lipoplex-cell interactions, which effect was the major reason behind the inhibitory effect of serum on lipofection efficiency. It was concluded that, in the presence or absence of serum, lipoplex size is a major factor determining lipofection efficiency. Moreover, in the presence or absence of serum, lipoplex size was found to affect lipofection efficiency by controlling the size of the intracellular vesicles containing lipoplexes after internalization, but not by affecting lipoplex-cell interactions. In addition, large lipoplex particles showed, in general, higher lipofection efficiency than small particles. These results imply that, by controlling lipoplex size, an efficient lipid delivery system may be achieved for in vitro and in vivo gene therapy.  相似文献   

11.
Guo W  Lee RJ 《Bioscience reports》2000,20(5):419-432
Synthetic gene transfer vectors based on polyplexes complexed to anionic liposomes (LPDII vectors) were characterized for their transfection efficiency in cultured mammalian cells. The effects of polycation to DNA ratio, lipid to DNA ratio, choice of polycation and lipid composition were systematically evaluated in human oral carcinoma KB cells, using a luciferase reporter gene. For LPDII formulations containing poly-L-lysine and dioeoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) anionic liposomes, at a constant lipid to DNA ratio, an increase in the polycation/DNA (N/P) ratio resulted in an increase in transfection activity. Meanwhile, the optimal lipid to DNA ratio for efficient gene delivery was influenced by the N/P ratio used, and was increased at higher N/P ratios. For the DNA condensing agent, poly-L-lysine could be replaced by polyethylenimine (PEI) as the DNA condensing agent in the formulations. For the lipidic components, CHEMS could be replaced by other anioniclipids including oleic acid, dicetylphosphate and phosphatidylserine, but DOPE, a fusogenic helper lipid, could not be replaced by dioleolyphosphatidylcholine. LPDII formulation showed significantly less cytotoxicity compared to the commonly used cationic lipsomes or PEI mediated transfection and several cell lines were transfected with high efficiency. LPDII vectors avoid the use of toxic cationic lipids and may have potential application in gene therapy.  相似文献   

12.
Abstract

Multilamellar vesicles (MLVs) containing the cationic lipid DOTAP were used as vectors to lipofect a number of culture cell lines in the presence of serum. The lipofection efficiency of lipoplexes made of MLVs and the plasmid pSV-β galactosidase are much less sensitive to the lipofection-inhibitory effect of serum than the conventionally used lipoplexes made of sonicated small unilamellar vesicles (SUVs). In order to determine the factors favoring the lipofection efficiency of MLVs, we measured the size, as well as the cellular association and uptake of MLV and SUV lipoplexes containing DOTAP alone or DOTAP:DOPE (1:1). Electron microscope images of these complexes were taken to confirm their structure and size. The single most important factor that correlates with transfection efficiency in serum is the size of the lipoplex. SUV lipoplexes remain smaller than 300 nm in the presence of serum, and the lipofection efficiencies are low. MLV lipoplexes are larger (>300 nm) and the lipofection efficiency, as well as cellular association and uptake, are much higher than those of SUV lipoplexes. Exceptions are those lipoplexes made of MLVs of DOTAP and DOPE (1:1) combined with DNA at higher charge ratios, which form hexagonal structures and show poor lipofection as well as cellular association and uptake, even if their lipoplex size exceeds 300 nm. This finding lends credence to our theory of the serum inhibition effect upon lipofection, and suggests ways to improve the transfection efficiency in the presence of serum, by fabricating lipoplexes of defined sizes.  相似文献   

13.
In order to identify factors affecting cationic Iiposome-mediated gene transfer, the relationships were examined among cationic liposome/DNA complex (lipoplex)-cell interactions, lipoplex size and lipoplex-mediated transfection (lipofection) efficiency. It was found that lipofection efficiency was determined mainly by lipoplex size, but not by the extent of lipoplex-cell interactions including binding, uptake or fusion. In addition, it was found that serum affected mainly lipoplex size, but not lipoplex-cell interactions, which effect was the major reason behind the inhibitory effect of serum on lipofection efficiency. It was concluded that, in the presence or absence of serum, lipoplex size is a major factor determining Iipofection efficiency. Moreover, in the presence or absence of serum, lipoplex size was found to affect lipofection efficiency by controlling the size of the intracellular vesicles containing lipoplexes after internalization, but not by affecting lipoplex-cell interactions. In addition, large lipoplex particles showed, in general, higher lipofection efficiency than small particles. These results imply that, by controlling lipoplex size, an efficient lipid delivery system may be achieved for in vitro and in vivo gene therapy.  相似文献   

14.
BACKGROUND: Current liposome-based gene delivery methods for therapeutic benefit are limited by their low efficiency. One possible way to improve gene expression is to include a peptide with a nuclear localization signal (NLS) to enhance the movement of the transfection complex from the cytoplasm to the nuclei of target cells. We have tested a synthetic peptide based on the amino terminal region of the polyoma virus VP1 protein. This region has non-overlapping motifs for DNA binding and nuclear localization. METHODS: Luciferase gene transfer efficiency was evaluated using this peptide and a control peptide with a mutated NLS in subconfluent, confluent and polarized human bronchial epithelial (16HBE) cells compared to lipoplex alone. RESULTS: Gene transfer efficiency with a lipopolyplex containing the VP1 peptide enhanced gene delivery compared to lipoplex. Transfection with a lipopolyplex containing the control peptide failed to enhance gene delivery. The VP1 peptide increased the amount of plasmid associated with the nucleus while the mutant VP1 peptide did not. The order of lipopolyplex formation was important, with greatest enhancement when peptide was added to the plasmid before addition of the liposome. A bipartite peptide with the VP1 sequence and an integrin-binding motif (RGD) resulted in a reduction in gene transfer efficiency compared to lipoplex. Cell adhesion studies showed that the integrin binding associated with the RGD motif was lost when it was attached to the VP1 sequence. The combination of the two peptide sequences in cis may have compromised the function of both. CONCLUSIONS: Our results indicate that the VP1 peptide represents a strategy to enhance liposome-mediated gene delivery to airway epithelia in vitro. Comparison of transfection efficiencies between the VP1 and the mutant VP1 peptides and the direct measurement of plasmid associated with the nucleus suggests that this enhancement is caused by the NLS signal sequence in the peptide.  相似文献   

15.
Nonviral vectors are safer and more cost-effective than viral vectors but are significantly less efficient, and thus, increasing the efficiency of nonviral vectors remains an important objective. One way to overcome this problem is by stimulating the nuclear localization of exogenous genes. Nuclear localization signals (NLSs) are known to be involved in the active transport of exogenous proteins and probes into the nucleus. However, stimulation of nuclear localization of plasmid DNA has yet to be confirmed completely. In the present study, we prepared plasmid DNA-NLS peptide conjugates and adjusted spacer length and number introduced in an attempt to increase transfection efficiency. In comparison to conjugates with unmodified plasmid DNA and short spacers, we found that NLS-plasmid DNA conjugates with covalent bonding by diazo coupling through PEG chain (MW 3400) stimulated complexation with the nuclear transport proteins importin alpha and importin beta. Evaluation of transfection showed higher expression efficiency with plasmid DNA-NLS peptide conjugates than with unmodified plasmids. However, evaluation of intracellular trafficking after microinjection into the cytoplasm showed plasmid DNA-NLS peptide conjugates only within the cytoplasm; there was no NLS-plasmid stimulation of nuclear localization. Our findings suggest that stimulation of plasmid nuclear localization cannot be achieved merely by changing spacer length or chemically modifying plasmid DNA-NLS peptide conjugates. An additional mechanism must be involved.  相似文献   

16.
The stability in physiological medium of polyplex- and lipoplex-type nonviral gene vectors was evaluated by detecting the conformational change of complexed plasmid DNA (pDNA) labeled simultaneously with fluorescein (energy donor) and X-rhodamine (energy acceptor) through fluorescence resonance energy transfer (FRET). Upon mixing with cationic components, such as LipofectAMINE, poly(L-lysine), and poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLys), the fluorescence spectrum of doubly labeled pDNA underwent a drastic change due to the occurrence of FRET between the donor-acceptor pair on pDNA taking a globular conformation (condensed state) through complexation. The measurement was carried out also in the presence of 20% serum, under which conditions FRET from condensed pDNA was clearly monitored without interference from coexisting components in the medium, allowing evaluation of the condensed state of pDNA in nonviral gene vectors under physiological conditions. Serum addition immediately induced a sharp decrease in FRET for the LipofectAMINE/pDNA (lipoplex) system, which was consistent with the sharp decrease in the transfection efficiency of the lipoplex system in serum-containing medium. In contrast, the PEG-PLys/pDNA polyplex (polyion complex micelle) system maintained appreciable transfection efficiency even in serum-containing medium, and FRET efficiency remained constant for up to 12 h, indicating the high stability of the polyion complex micelle under physiological conditions.  相似文献   

17.
Transient transfection of epithelial cells with lipid reagents has been limited because of toxicity and lack of efficacy. In this study, we show that more recently developed lipids transfect nonpolarized human airway epithelial cells with high efficacy and efficiency and little or no toxicity. Because of this success, we hypothesized that these lipids may also allow transient transfection of polarized epithelial monolayers. A panel of reagents was tested for transfer of the reporter gene luciferase (LUC) into polarized monolayers of non-cystic fibrosis (non-CF) and CF human bronchial epithelial cells, MDCK epithelial cell monolayers, and, ultimately, primary non-CF and CF airway epithelial cells. Lipid reagents, which were most successful in initial LUC assays, were also tested for transfer of vectors bearing the reporter gene green fluorescent protein (GFP) and for successful transfection and expression of an epithelial-specific protein, the cystic fibrosis transmembrane conductance regulator (CFTR). Electrophysiological, biochemical, and immunological assays were performed to show successful complementation of an epithelial monolayer with transiently expressed CFTR. We also present findings that help facilitate monolayer formation by these airway epithelial cell lines. Together, these data show that polarized monolayers are transfected transiently with more recently developed lipids, specifically LipofectAMINE PLUS and LipofectAMINE 2000. Transient transfection of epithelial monolayers provides a powerful system in which to express the cDNA of any epithelium-specific protein transiently in a native polarized epithelium to study protein function.  相似文献   

18.
Gene therapy is a medical technique intended for treatment of disorders caused by defective, missing, or overexpressing genes. Efficient delivery vectors are necessary in order to transport genetic material to the target cells. Such vectors include viral and non-viral carriers. Viral vectors transfect cells efficiently, however risks associated with their use have limited their clinical applications. Nonviral delivery systems are safer, easier to prepare, more versatile and cost effective. However, their transfection efficiency still falls behind that of the viral vectors. Considerable research into nonviral gene delivery has been conducted in the last two decades on synthetic soft materials such as cationic lipids, polymers, surfactants, and dendrimers as prospective nucleotide carriers for gene delivery. So far, cationic lipids are the most widely used constituents of nonviral gene carriers, with multiple strategies employed to improve their in vitro and in vivo transfection. Efforts in synthesizing new cationic lipids were not fully successful in closing the gap between the efficiency of the viral vectors and that of binary cationic lipid/DNA complexes. Current efforts for improving lipofection efficiency are focused on the development of multicomponent carriers including cationic lipids as key constituents. This review summarizes the recent patents on new cationic lipids as well as on multicomponent formulations enhancing their efficiency as nucleotide carriers.  相似文献   

19.
Nuclear import is considered as one of the major limitations for non-viral gene delivery systems and the incorporation of nuclear localization signals (NLS) that mediate nuclear intake can be used as a strategy to enhance internalization of exogenous DNA.In this work, human-derived endogenous NLS peptides based on insulin growth factor binding proteins (IGFBP), namely IGFBP-3 and IGFBP-5, were tested for their ability to improve nuclear translocation of genetic material by non-viral vectors. Several strategies were tested to determine their effect on chitosan mediated transfection efficiency: co-administration with polyplexes, co-complexation at the time of polyplex formation, and covalent ligation to chitosan. Our results show that co-complexation and covalent ligation of the NLS peptide derived from IGFBP-3 to chitosan polyplexes yields a 2-fold increase in transfection efficiency, which was not observed for NLS peptide derived from IGFBP-5.These results indicate that the integration of IGFBP-NLS-3 peptides into polyplexes has potential as a strategy to enhance the efficiency of non-viral vectors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号