首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Caenorhabditis elegans SLO-1 channel belongs to the family of calcium-activated large conductance BK potassium channels. SLO-1 has been shown to be involved in neurotransmitter release and ethanol response. Here, we report that SLO-1 also has a critical role in muscles. Inactivation of the slo-1 gene in muscles leads to phenotypes similar to those caused by mutations of the dystrophin homologue dys-1. Notably, slo-1 mutations result in a progressive muscle degeneration when put into a sensitized genetic background. slo-1 localization was observed by gfp reporter gene in both the M-line and the dense bodies (Z line) of the C.elegans body-wall muscles. Using the inside-out configuration of the patch clamp technique on body-wall muscle cells of acutely dissected wild-type worms, we characterized a Ca2+-activated K+ channel that was identified unambiguously as SLO-1. Since neither the abundance nor the conductance of SLO-1 was changed significantly in dys-1 mutants compared to wild-type animals, it is likely that the inactivation of dys-1 causes a misregulation of SLO-1. All in all, these results indicate that SLO-1 function in C.elegans muscles is related to the dystrophin homologue DYS-1.  相似文献   

2.
LeBoeuf B  Garcia LR 《Genetics》2012,190(3):1025-1041
Variations in K(+) channel composition allow for differences in cell excitability and, at an organismal level, provide flexibility to behavioral regulation. When the function of a K(+) channel is disrupted, the remaining K(+) channels might incompletely compensate, manifesting as abnormal organismal behavior. In this study, we explored how different K(+) channels interact to regulate the neuromuscular circuitry used by Caenorhabditis elegans males to protract their copulatory spicules from their tail and insert them into the hermaphrodite's vulva during mating. We determined that the big current K(+) channel (BK)/SLO-1 genetically interacts with ether-a-go-go (EAG)/EGL-2 and EAG-related gene/UNC-103 K(+) channels to control spicule protraction. Through rescue experiments, we show that specific slo-1 isoforms affect spicule protraction. Gene expression studies show that slo-1 and egl-2 expression can be upregulated in a calcium/calmodulin-dependent protein kinase II-dependent manner to compensate for the loss of unc-103 and conversely, unc-103 can partially compensate for the loss of SLO-1 function. In conclusion, an interaction between BK and EAG family K(+) channels produces the muscle excitability levels that regulate the timing of spicule protraction and the success of male mating behavior.  相似文献   

3.
The role of Na(+), K(+), Cl(-)-cotransport (NKCC) in apoptosis of HepG2 human hepatoblastoma cells was investigated. Pinacidil (Pin), an activator of ATP-sensitive K(+) (K(ATP)) channels, induced apoptosis in a dose- and time-dependent manner in HepG2 cells. Pin increased intracellular K(+) concentration ([K(+)](i)). Bumetanide and furosemide, NKCC inhibitors, significantly inhibited the Pin-induced increased [K(+)](i) and apoptosis, whereas K(ATP) inhibitors (glibenclamide and tolbutamide) had no effects. The Pin-induced [K(+)](i) increase was significantly prevented by reducing extracellular Cl(-) concentration, and Pin also increased intracellular Na(+) concentration ([Na(+)](i)), further indicating that these effects of Pin may be due to NKCC activation. In addition, Pin induced a rapid and sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), which was completely prevented by the NKCC inhibitors. Treatment with EGTA or BAPTA/AM markedly inhibited the Pin-induced apoptosis. Inhibitors of Na(+), Ca(2+)-exchanger, bepridil, and benzamil significantly prevented both [Ca(2+)](i) increase and apoptosis induced by Pin. Taken together, these results suggest that Pin increases [Na(+)](i) through NKCC activation, which leads to stimulation of reverse-mode of Na(+), Ca(2+) exchanger, resulting in [Ca(2+)](i) increase, and in turn, apoptosis. These results further suggest that NKCC may be a good target for induction of apoptosis in human hepatoma cells.  相似文献   

4.
Z W Wang  O Saifee  M L Nonet  L Salkoff 《Neuron》2001,32(5):867-881
Six mutants of SLO-1, a large-conductance, Ca(2+)-activated K(+) channel of C. elegans, were obtained in a genetic screen for regulators of neurotransmitter release. Mutants were isolated by their ability to suppress lethargy of an unc-64 syntaxin mutant that restricts neurotransmitter release. We measured evoked postsynaptic currents at the neuromuscular junction in both wild-type and mutants and observed that the removal of SLO-1 greatly increased quantal content primarily by increasing duration of release. The selective isolation of slo-1 as the only ion channel mutant derived from a whole genomic screen to detect regulators of neurotransmitter release suggests that SLO-1 plays an important, if not unique, role in regulating neurotransmitter release.  相似文献   

5.
1. The metabolism of K(+), Na(+) and Cl(-) has been investigated in isolated fat-cells prepared from the epididymal adipose tissue of rats. 2. Methods are described for measuring the intracellular water space, the rates of loss of intracellular (42)K(+), (22)Na(+) and (36)Cl(-) and the intracellular concentrations of K(+), Na(+) and Cl(-) in isolated fat-cells. 3. The intracellular water space, measured as the [(3)H]water space minus the [carboxylic acid-(14)C]inulin space, was 3.93+/-0.38mul./100mg. cell dry wt. 4. The first-order rate constants for radioisotope effluxes from isolated fat-cells were 0.029min.(-1) for (42)K(+), 0.245min.(-1) for (22)Na(+) and 0.158min.(-1) for (36)Cl(-). 5. The intracellular concentrations of K(+), Na(+) and Cl(-) were 146m-equiv./l., 18.6+/-2.9m-equiv./l. and 43+/-2.4m-equiv./l. respectively. 6. The total intracellular K(+) content of isolated fat-cells was determined by atomic-absorption spectrophotometry to confirm the value obtained from the radioisotope-efflux data. 7. The ion effluxes from isolated fat-cells were: K(+), 1.5pmoles/cm.(2)/sec., Na(+), 1.6pmoles/cm.(2)/sec., and Cl(-), 2.4pmoles/cm.(2)/sec. 8. The membrane potential of isolated fat-cells calculated from the Cl(-) distribution ratio was -28.7mv.  相似文献   

6.
The cyclo-octapdepsipeptide anthelmintic emodepside exerts a profound paralysis on parasitic and free-living nematodes. The neuromuscular junction is a significant determinant of this effect. Pharmacological and electrophysiological analyses in the parasitic nematode Ascaris suum have resolved that emodepside elicits a hyperpolarisation of body wall muscle, which is dependent on extracellular calcium and the efflux of potassium ions. The molecular basis for emodepside's action has been investigated in forward genetic screens in the free-living nematode Caenorhabditis elegans. Two screens for emodepside resistance, totalling 20,000 genomes, identified several mutants of slo-1, which encodes a calcium-activated potassium channel homologous to mammalian BK channels. Slo-1 null mutants are more than 1000-fold less sensitive to emodepside than wild-type C. elegans and tissue-specific expression studies show emodepside acts on SLO-1 in neurons regulating feeding and motility as well as acting on SLO-1 in body wall muscle. These genetic data, combined with physiological measurements in C. elegans and the earlier physiological analyses on A. suum, define a pivotal role for SLO-1 in the mode of action of emodepside. Additional signalling pathways have emerged as determinants of emodepside's mode of action through biochemical and hypothesis-driven approaches. Mutant analyses of these pathways suggest a modulatory role for each of them in emodepside's mode of action; however, they impart much more modest changes in the sensitivity to emodepside than mutations in slo-1. Taken together these studies identify SLO-1 as the major determinant of emodepside's anthelmintic activity. Structural information on the BK channels has advanced significantly in the last 2?years. Therefore, we rationalise this possibility by suggesting a model that speculates on the nature of the emodepside pharmacophore within the calcium-activated potassium channels.  相似文献   

7.
Iono- and osmoregulation by the blood-feeding hemipteran Rhodnius prolixus involves co-ordinated actions of the upper and lower Malpighian tubules. The upper tubule secretes ions (Na(+), K(+), Cl(-)) and water, whereas the lower tubule reabsorbs K(+) and Cl(-) but not water. The extent of KCl reabsorption by the lower tubule in vitro was monitored by ion-selective microelectrode measurement of Cl(-) and/or K(+) concentration in droplets of fluid secreted by Malpighian tubules isolated under oil. An earlier study proposed that K(+) reabsorption involves an omeprazole-sensitive apical K(+)/H(+) ATPase and Ba(2+)-sensitive basolateral K(+) channels. This paper examines the effects acetazolamide and of compounds that inhibit chloride channels, Cl(-)/HCO(3)(-) exchangers and Na(+)/K(+)/2Cl(-) or K(+)/Cl(-) co-transporters. The results suggest that Cl(-) reabsorption is inhibited by acetazolamide and by Cl(-) channel blockers, including diphenylamine-2-carboxylate(DPC) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), but not by compounds that block Na(+)/K(+)/Cl(-) and K(+)/Cl(-) co-transporters. Measurements of transepithelial potential and basolateral membrane potential during changes in bathing saline chloride concentration indicate the presence of DPC- and NPPB-sensitive chloride channels in the basolateral membrane. A working hypothesis of ion movements during KCl reabsorption proposes that Cl(-) moves from lumen to cell through a stilbene-insensitive Cl(-)/HCO(3)(-) exchanger and then exits the cell through basolateral Cl(-) channels.  相似文献   

8.
Stojilkovic SS 《Cell calcium》2012,51(3-4):212-221
Endocrine pituitary cells express numerous voltage-gated Na(+), Ca(2+), K(+), and Cl(-) channels and several ligand-gated channels, and they fire action potentials spontaneously. Depending on the cell type, this electrical activity can generate localized or global Ca(2+) signals, the latter reaching the threshold for stimulus-secretion coupling. These cells also express numerous G-protein-coupled receptors, which can stimulate or silence electrical activity and Ca(2+) influx through voltage-gated Ca(2+) channels and hormone release. Receptors positively coupled to the adenylyl cyclase signaling pathway stimulate electrical activity with cAMP, which activates hyperpolarization-activated cyclic nucleotide-regulated channels directly, or by cAMP-dependent kinase-mediated phosphorylation of K(+), Na(+), Ca(2+), and/or non-selective cation-conducting channels. Receptors that are negatively coupled to adenylyl cyclase signaling pathways inhibit spontaneous electrical activity and accompanied Ca(2+) transients predominantly through the activation of inwardly rectifying K(+) channels and the inhibition of voltage-gated Ca(2+) channels. The Ca(2+)-mobilizing receptors activate inositol trisphosphate-gated Ca(2+) channels in the endoplasmic reticulum, leading to Ca(2+) release in an oscillatory or non-oscillatory manner, depending on the cell type. This Ca(2+) release causes a cell type-specific modulation of electrical activity and intracellular Ca(2+) handling.  相似文献   

9.
We tested the hypothesis that the level of intracellular sodium modulates the hormonal regulation of the Na(+),K(+)-ATPase activity in proximal tubule cells. By using digital imaging fluorescence microscopy of a sodium-sensitive dye, we determined that the sodium ionophore monensin induced a dose-specific increase of intracellular sodium. A correspondence between the elevation of intracellular sodium and the level of dopamine-induced inhibition of Na(+),K(+)-ATPase activity was determined. At basal intracellular sodium concentration, stimulation of cellular protein kinase C by phorbol 12-myristate 13-acetate (PMA) promoted a significant increase in Na(+),K(+)-ATPase activity; however, this activation was gradually reduced as the concentration of intracellular sodium was increased to become a significant inhibition at concentrations of intracellular sodium higher than 16 mm. Under these conditions, PMA and dopamine share the same signaling pathway to inhibit the Na(+),K(+)-ATPase. The effects of PMA and dopamine on the Na(+),K(+)-ATPase activity and the modulation of these effects by different intracellular sodium concentrations were not modified when extracellular and intracellular calcium were almost eliminated. These results suggest that the level of intracellular sodium modulates whether hormones stimulate, inhibit, or have no effect on the Na(+),K(+)-ATPase activity leading to a tight control of sodium reabsorption.  相似文献   

10.
The calcium-gated potassium channel SLO-1 in Caenorhabditis elegans was recently identified as key component for action of emodepside, a new anthelmintic drug with broad spectrum activity. In this study we identified orthologues of slo-1 in Ancylostoma caninum, Cooperia oncophora, and Haemonchus contortus, all important parasitic nematodes in veterinary medicine. Furthermore, functional analyses of these slo-1 orthologues were performed using heterologous expression in C. elegans. We expressed A. caninum and C. oncophora slo-1 in the emodepside-resistant genetic background of the slo-1 loss-of-function mutant NM1968 slo-1(js379). Transformants expressing A. caninum slo-1 from C. elegans slo-1 promoter were highly susceptible (compared to the fully emodepside-resistant slo-1(js379)) and showed no significant difference in their emodepside susceptibility compared to wild-type C. elegans (p = 0.831). Therefore, the SLO-1 channels of A. caninum and C. elegans appear to be completely functionally interchangeable in terms of emodepside sensitivity. Furthermore, we tested the ability of the 5′ flanking regions of A. caninum and C. oncophora slo-1 to drive expression of SLO-1 in C. elegans and confirmed functionality of the putative promoters in this heterologous system. For all transgenic lines tested, expression of either native C. elegans slo-1 or the parasite-derived orthologue rescued emodepside sensitivity in slo-1(js379) and the locomotor phenotype of increased reversal frequency confirming the reconstitution of SLO-1 function in the locomotor circuits. A potent mammalian SLO-1 channel inhibitor, penitrem A, showed emodepside antagonising effects in A. caninum and C. elegans. The study combined the investigation of new anthelmintic targets from parasitic nematodes and experimental use of the respective target genes in C. elegans, therefore closing the gap between research approaches using model nematodes and those using target organisms. Considering the still scarcely advanced techniques for genetic engineering of parasitic nematodes, the presented method provides an excellent opportunity for examining the pharmacofunction of anthelmintic targets derived from parasitic nematodes.  相似文献   

11.
In this study, the correlation between Cl(-) influx in freshwater tilapia and various transporters or enzymes, the Cl(-)/HCO(3)(-) exchanger, Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase were examined. The inhibitors 2x10(-4) M ouabain (a Na(+),K(+)-ATPase inhibitor), 10(-5) M NEM (a V-type H(+)-ATPase inhibitor), 10(-2) M ACTZ (acetazolamide, a carbonic anhydrase inhibitor), and 6x10(-4) M DIDS (a Cl(-)/HCO(3)(-) exchanger inhibitor) caused 40%, 60%-80%, 40%-60%, and 40%-60% reduction in Cl(-) influx of freshwater tilapia, respectively. The inhibitor 2x10(-4) M ouabain also caused 50%-65% inhibition in gill Na(+),K(+)-ATPase activity. Western blot results showed that protein levels of gill Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase in tilapia acclimated in low-Cl(-) freshwater were significantly higher than those acclimated to high-Cl(-) freshwater. Based on these data, we conclude that Na(+),K(+)-ATPase, V-H(+)-ATPase, the Cl(-)/HCO(3)(-) exchanger, and carbonic anhydrase may be involved in the active Cl(-) uptake mechanism in gills of freshwater-adapted tilapia.  相似文献   

12.
Contraction stimulates Na(+),K(+)-ATPase and AMP-activated protein kinase (AMPK) activity in skeletal muscle. Whether AMPK activation affects Na(+),K(+)-ATPase activity in skeletal muscle remains to be determined. Short term stimulation of rat L6 myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), activates AMPK and promotes translocation of the Na(+),K(+)-ATPase α(1)-subunit to the plasma membrane and increases Na(+),K(+)-ATPase activity as assessed by ouabain-sensitive (86)Rb(+) uptake. Cyanide-induced artificial anoxia, as well as a direct AMPK activator (A-769662) also increase AMPK phosphorylation and Na(+),K(+)-ATPase activity. Thus, different stimuli that target AMPK concomitantly increase Na(+),K(+)-ATPase activity. The effect of AICAR on Na(+),K(+)-ATPase in L6 myotubes was attenuated by Compound C, an AMPK inhibitor, as well as siRNA-mediated AMPK silencing. The effects of AICAR on Na(+),K(+)-ATPase were completely abolished in cultured primary mouse muscle cells lacking AMPK α-subunits. AMPK stimulation leads to Na(+),K(+)-ATPase α(1)-subunit dephosphorylation at Ser(18), which may prevent endocytosis of the sodium pump. AICAR stimulation leads to methylation and dephosphorylation of the catalytic subunit of the protein phosphatase (PP) 2A in L6 myotubes. Moreover, AICAR-triggered dephosphorylation of the Na(+),K(+)-ATPase was prevented in L6 myotubes deficient in PP2A-specific protein phosphatase methylesterase-1 (PME-1), indicating a role for the PP2A·PME-1 complex in AMPK-mediated regulation of Na(+),K(+)-ATPase. Thus contrary to the common paradigm, we report AMPK-dependent activation of an energy-consuming ion pumping process. This activation may be a potential mechanism by which exercise and metabolic stress activate the sodium pump in skeletal muscle.  相似文献   

13.
Two types of Na(+)-independent Mg(2+) efflux exist in erythrocytes: (1) Mg(2+) efflux in sucrose medium and (2) Mg(2+) efflux in high Cl(-) media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na(+)-independent Mg(2+) efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K(+),Cl(-)- and Na(+),K(+),Cl(-)-symport, Na(+)/H(+)-, Na(+)/Mg(2+)-, Na(+)/Ca(2+)- and K(+)(Na(+))/H(+) antiport, Ca(2+)-activated K(+) channel and Mg(2+) leak flux. We suggest that, in choline Cl medium, Na(+)-independent Mg(2+) efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg(2+) efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg(2+) to the same degree. The K(d) value for inhibition of [(14)C]choline efflux and for inhibition of Mg(2+) efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg(2+) efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg(2+) efflux was reduced to the same degree by these inhibitors as was the [(14)C]choline efflux.  相似文献   

14.
The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.  相似文献   

15.
A detailed study of hypertonically stimulated Na-K-2Cl cotransport (NKCC1) in Xenopus laevis oocytes was carried out to better understand the 1 K(+):1 Cl(-) stoichiometry of transport that was previously observed. In this study, we derived the velocity equations for K(+) influx under both rapid equilibrium assumptions and combined equilibrium and steady-state assumptions and demonstrate that the behavior of the equations and curves in Lineweaver-Burke plots are consistent with a model where Cl(-) binds first, followed by Na(+), a second Cl(-), and then K(+). We further demonstrate that stimulation of K(+) movement by K(+) on the trans side is an intrinsic property of a carrier that transports multiple substrates. We also demonstrate that K(+) movement through NKCC1 is strictly dependent upon the presence of external Na(+), even though only a fraction of Na(+) is in fact transported. Finally, we propose that the larger transport of K(+), as compared with Na(+), is a result of the return of partially unloaded carriers, which masks the net 1Na(+):1K(+):2Cl(-) stoichiometry of NKCC1. These data have profound implications for the physiology of Na-K-2Cl cotransport, since transport of K-Cl in some conditions seems to be uncoupled from the transport of Na-Cl.  相似文献   

16.
A possible role for signalling through phospholipase C in histamine-induced catecholamine secretion from bovine adrenal chromaffin cells has been investigated. Secretion evoked by histamine over 10 min was not prevented by inhibiting inositol-1,4,5-trisphosphate receptors with 2-APB, by blocking ryanodine receptors with a combination of ryanodine and caffeine, or by depleting intracellular Ca(2+) stores by pretreatment with thapsigargin. Inhibition of protein kinase C with Ro31-8220 also failed to reduce secretion. Inhibition of phospholipase C with ET-18-OCH(3) reduced both histamine- and K(+) -induced inositol phosphate responses by 70-80% without reducing their secretory responses. Stimulating phospholipase C with Pasteurella multocida toxin did not evoke secretion or enhance the secretory response to histamine. The secretory response to histamine was little affected by tetrodotoxin or by substituting extracellular Na(+) with N -methyl-d-glucamine(+) or choline(+), or by substituting external Cl(-) with nitrate(-). Blocking various K(+) channels with apamin, charybdotoxin, Ba(2+), tetraethylammonium, 4-aminopyridine, tertiapin or glibenclamide failed to reduce the ability of histamine to evoke secretion. These results indicate that histamine evokes secretion by a mechanism that does not require inositol-1,4,5-trisphosphate-mediated mobilization of stored Ca(2+), diacylglycerol-mediated activation of protein kinase C, or activation of phospholipase C. The results are consistent with histamine acting by depolarizing chromaffin cells through a phospholipase C-independent mechanism.  相似文献   

17.
18.
Ravens U  Wettwer E  Hála O 《Cell calcium》2004,35(6):575-582
Ion channels and transporter proteins are prerequisites for formation and conduction of cardiac electrical impulses. Acting in concert, these proteins maintain cellular Na(+) and Ca(2+) homeostasis. Since intracellular Ca(2+) concentration determines contractile activation, we expect the majority of agents that modulate activity of ion channels and transporters not only to influence cellular action potentials but also contractile force. Drugs which block ion channels usually possess antiarrhythmic properties, those inhibiting the Na(+) pump have predominantly inotropic effects and those affecting Na(+),Ca(2+)- or Na(+),H(+)-exchanger protect against ischaemic cell damage. However, irrespective of their primary indication, all compounds targeted against ion channels and transporter proteins possess potential proarrhythmic activity.  相似文献   

19.
Isolated salivary glands of Periplaneta americana were used to measure secretion rates and, by quantitative capillary electrophoresis, Na(+), K(+), and Cl(-) concentrations in saliva collected during dopamine (1 micro M) and serotonin (1 micro M) stimulation in the absence and presence of ouabain (100 micro M) or bumetanide (10 micro M). Dopamine stimulated secretion of a NaCl-rich hyposmotic saliva containing (mM): Na(+) 95 +/- 2; K(+) 38 +/- 1; Cl(-) 145 +/- 3. Saliva collected during serotonin stimulation had a similar composition. Bumetanide decreased secretion rates induced by dopamine and serotonin; secreted saliva had lower Na(+), K(+) and Cl(-) concentrations and osmolarity. Ouabain caused increased secretion rates on a serotonin background. Saliva secreted during dopamine but not serotonin stimulation in the presence of ouabain had lower K(+) and higher Na(+) and Cl(-) concentrations, and was isosmotic. We concluded: The Na(+)-K(+)-2Cl(-) cotransporter is of cardinal importance for electrolyte and fluid secretion. The Na(+)/K(+)-ATPase contributes to apical Na(+) outward transport and Na(+) and K(+) cycling across the basolateral membrane in acinar P-cells. The salivary ducts modify the primary saliva by Na(+) reabsorption and K(+) secretion, whereby Na(+) reabsorption is energized by the basolateral Na(+)/K(+)-ATPase which imports also some of the K(+) needed for apical K(+) extrusion.  相似文献   

20.
Insulin stimulates Na(+),K(+)-ATPase activity and induces translocation of Na(+),K(+)-ATPase molecules to the plasma membrane in skeletal muscle. We determined the molecular mechanism by which insulin regulates Na(+),K(+)-ATPase in differentiated primary human skeletal muscle cells (HSMCs). Insulin action on Na(+),K(+)-ATPase was dependent on ERK1/2 in HSMCs. Sequence analysis of Na(+),K(+)-ATPase alpha-subunits revealed several potential ERK phosphorylation sites. Insulin increased ouabain-sensitive (86)Rb(+) uptake and [(3)H]ouabain binding in intact cells. Insulin also increased phosphorylation and plasma membrane content of the Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunits. Insulin-stimulated Na(+),K(+)-ATPase activation, phosphorylation, and translocation of alpha-subunits to the plasma membrane were abolished by 20 microm PD98059, which is an inhibitor of MEK1/2, an upstream kinase of ERK1/2. Furthermore, inhibitors of phosphatidylinositol 3-kinase (100 nm wortmannin) and protein kinase C (10 microm GF109203X) had similar effects. Notably, insulin-stimulated ERK1/2 phosphorylation was abolished by wortmannin and GF109203X in HSMCs. Insulin also stimulated phosphorylation of alpha(1)- and alpha(2)-subunits on Thr-Pro amino acid motifs, which form specific ERK substrates. Furthermore, recombinant ERK1 and -2 kinases were able to phosphorylate alpha-subunit of purified human Na(+),K(+)-ATPase in vitro. In conclusion, insulin stimulates Na(+),K(+)-ATPase activity and translocation to plasma membrane in HSMCs via phosphorylation of the alpha-subunits by ERK1/2 mitogen-activated protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号