共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-site methods were developed for immunoassay of acetylcholinesterase (AChE; EC 3.1.1.7) in crude extracts of rat and human tissues. A radiometric assay for human AChE utilized a specific monoclonal AChE antibody adsorbed to polystyrene microtiter wells at alkaline pH. AChE bound strongly to this antibody after 24 h at 4 degrees C. Bound enzyme was detected with an 125I-labeled antibody against a different AChE epitope. The assay signal was quasi-linearly related to AChE concentration in purified and crude samples, with a detection threshold near 100 pg. Tetrameric and dimeric AChE behaved equivalently in the assay. Two-site methods with a different pair of species-selective antibodies worked equally well for immunoassay of rat AChE. Assays of the rat enzyme showed that immunoreactivity was lost as rapidly as enzyme activity during heating to 54 degrees C. On the other hand, immunoreactivity was preserved despite loss of enzyme activity after exposure to anticholinesterases or trypsin. A biotinylated second antibody detected by alkaline-phosphatase-conjugated avidin was used to develop an AChE enzyme-linked immunosorbent assay (ELISA) with a sensitivity similar to that of the radiometric assay. Either the ELISA or the radiometric immunoassay may be useful whenever proteolysis or other mechanisms are suspected of dissociating enzyme activity and immunoreactivity. In denervated muscle and ligated peripheral nerve, application of the two-site method showed closely parallel variations in immunoreactivity and enzyme activity. 相似文献
2.
Regulation of Taurine Transport in Rat Skeletal Muscle 总被引:1,自引:1,他引:1
Taurine concentration of soleus muscle (SL, slow-twitch) was initially about twofold higher than that of extensor digitorum longus muscle (EDL, fast-twitch). Taurine concentration in gastrocnemius muscle (GC) was intermediate between that of EDL and SL. Four days after sciatic nerve section, taurine concentration in the EDL but not in the SL was increased by 2.5-fold. The increase was not due to the muscle atrophy and was observed 28 days after denervation. Tenotomy did not increase the total taurine content of the EDL. The increase in taurine concentration of the denervated EDL was prevented by simultaneous ingestion of guanidinoethane sulfonate, a competitive inhibitor of taurine transport. The initial and the maximal rates of [3H]taurine uptake were significantly higher in SL than in EDL. Denervation dramatically accelerated the initial and the maximal rates of the transport in EDL, whereas it significantly reduced those in SL. In contrast, the electrical stimulation of sciatic nerve accelerated the uptake of taurine by EDL and SL of the control but not of the curare-treated rats. These results suggest that transport of taurine into rat skeletal muscles is regulated differently by neural information and by muscular activity, and that the regulation is dependent on the muscle phenotype. 相似文献
3.
Acetylcholinesterase from the Skeletal Muscle of the Lamprey Petromyzon marinus Exists in Globular and Asymmetric Forms 总被引:1,自引:0,他引:1
Leo Pezzementi†‡ Ellen J. Reinheimer Maureen L. Pezzementi 《Journal of neurochemistry》1987,48(6):1753-1760
To obtain information about the evolution of acetylcholinesterase (AChE), we undertook a study of the enzyme from the skeletal muscle of the lamprey Petromyzon marinus, a primitive vertebrate. We found that the cholinesterase activity of lamprey muscle is due to AChE, not pseudocholinesterase; the enzyme was inhibited by 1,5-bis(4-allyldimethylammonium phenyl) pentane-3-one (BW284C51), but not by tetramonoisopropyl pyrophosphortetramide (iso-OMPA) or ethopropazine. Also, the enzyme had a high affinity for acetylthiocholine and was inhibited by high concentrations of substrate. A large fraction of the AChE was found to be glycoprotein, since it was precipitated by concanavalin A-agarose. Optimal extraction of AChE was obtained in a high-salt detergent-containing buffer; fractional amounts of enzyme were extracted in buffers lacking salt and/or detergent. These data suggest that globular and asymmetric forms of AChE are present. On sucrose gradients, enzyme that was extracted in high-salt detergent-containing buffer sedimented as a broad peak of activity corresponding to G4; additionally, there was usually a peak corresponding to A12. Sequential extraction of AChE in conjunction with velocity sedimentation resolved minor forms of AChE and revealed that the G1, G2, G4, A4, A8, and A12 forms of AChE could be obtained from the muscle. The identity of the forms was confirmed through high-salt precipitation and collagenase digestion. The asymmetric forms of AChE were precipitated in low ionic strength buffer, and their sedimentation coefficients were shifted to higher values by collagenase digestion.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Lee L. Rubin Nina A. Chalfin Anna Adamo Michael W. Klymkowsky 《Journal of neurochemistry》1985,45(6):1932-1940
When grown in primary cell culture in the absence of neurons, muscle cells from a variety of species synthesize several forms of acetylcholinesterase (AChE), including the collagen-tailed A12 form. A12 AChE has been the subject of much study because it is thought to be a major functional enzyme form normally found in the basal lamina at the neuromuscular junction. In this paper, we show that muscle fibers derived from mouse embryos and neonates are also able to synthesize substantial percentages of their AChE as the A12 form when grown in vitro. This synthesis is modulated by a process associated with spontaneous muscle contractile activity since both total enzyme levels and the proportion of A12 AChE expressed on the cell surface are decreased when the cells are grown in the sodium channel blocker tetrodotoxin, which blocks muscle contraction. On the other hand, when the cells are treated with veratridine, which opens sodium channels, thereby mimicking one aspect of muscle contraction, their AChE levels are comparable to those of untreated cells. Although smaller in magnitude, these changes are similar to those seen in rat muscle cultures. A novel feature of mouse muscle cultures, not seen in those from rat and chick, is the presence of a secreted enzyme form that sediments in the same position as the cellular A12 form (when separated on sucrose density gradients containing high salt) and is also collagenase sensitive. 相似文献
5.
William V. Bleisch Victoria N. Luine Bruce S. McEwen 《Journal of neurochemistry》1983,40(6):1523-1528
We measured the distribution of molecular forms of acetylcholinesterase (AChE) in muscles of a song bird, the zebra finch, and found a pattern similar to those reported in other vertebrates. As in other species, the most rapidly sedimenting form of the enzyme decreases to barely detectable levels following denervation. In the muscles of the syrinx, castration causes a large decrease in AChE activity, but has little or no effect on the relative abundance of AChE forms. This suggests that the number of AChE catalytic sites is changing without affecting the distribution of catalytic sites among the molecular forms. This is in marked contrast with the effect of denervation in the syrinx, which causes changes in the distribution of activity, as well as in total activity. 相似文献
6.
Monoclonal Antibodies Specific for the Different Subunits of Asymmetric Acetylcholinesterase from Chick Muscle 总被引:1,自引:1,他引:1
The asymmetric (20S) acetylcholinesterase (AChE, EC 3.1.1.7) from 1-day-old chick muscle, purified on a column on which was immobilised a monoclonal antibody (mAb) to chick brain AChE, was used to immunise mice. Eight mAbs against the muscle enzyme were hence isolated and characterised. Five antibodies (4A8, 1C1, 10B7, 7G8, and 8H11) recognise a 110-kilodalton (kDa) subunit with AChE catalytic activity, one antibody (7D11) recognises a 72-kDa subunit with pseudocholinesterase or butyrylcholinesterase (BuChE, EC 3.1.1.8) catalytic activity, and two antibodies (6B6 and 7D7) react with the 58-kDa collagenous tail unit. Those three polypeptides can be recognised together in the 20S enzyme used, which is a hybrid AChE/BuChE oligomer. Antibodies 6B6 and 7D7 are specific for asymmetric AChE. Four of the mAbs recognising the 110-kDa subunit were reactive with it in immunoblots. Sucrose density gradient analysis of the antibody-enzyme complexes showed that the anti-110-kDa subunit mAbs cross-link multiple 20S AChE molecules to form large aggregates. In contrast, there is only a 2-3S increase in the sedimentation constant with the mAbs specific for the 72-kDa or for the 58-kDa subunit, suggesting that those subunits are more inaccessible in the structure to intermolecular cross-linking. The 4A8, 10B7, 7D11, and 7D7 mAbs showed cross-reactivity to the corresponding enzyme from quail muscle; however, none of the eight mAbs reacted with either enzyme type from mammalian muscle or from Torpedo electric organ. All eight antibodies showed immunocytochemical localisation of the AChE form at the neuromuscular junctions of chicken twitch muscles. 相似文献
7.
Regulation of the Expression of Acetylcholinesterase by Muscular Activity in Avian Primary Cultures 总被引:2,自引:1,他引:2
Primary cultures of avian muscle cells express both globular and asymmetric molecular forms of acetylcholinesterase (AChE) when grown in a simple defined culture medium. Under these conditions, we analyzed the role of various agents interfering with muscular activity: tetrodotoxin (TTX) and veratridine, as well as a depolarizing concentration of KCl. These treatments caused the complete cessation of contractions in mature myotubes. We observed no influence on cellular AChE activity. The paralyzing treatments induced different effects on AChE secretion: TTX increased the secretion by approximately 25%, whereas KCl and veratridine reduced it by approximately 30%. The proportions of secreted molecular forms (mostly hydrophilic G4 and G2) were not modified significantly. TTX did not affect the pattern of molecular forms of cellular AChE (in particular, the proportion of A forms was not changed). Depolarization by veratridine or KCl induced an increase in the proportion of A forms in mature myotubes by a factor of 2-3. Similar results were obtained with quail myotubes cultured under the same conditions. This study shows that, in avian muscle cultures, the ionic balance across myotube membranes, rather than muscular activity per se, can regulate the level of A forms and the rate of AChE secretion. These results do not exclude the possible involvement of other factors, such as Ca2+ and/or peptidic factors. In addition, taking together our results and data from the literature. we conclude that the expression of AChE molecular forms depends both on the species and on the culture conditions used. 相似文献
8.
Abstract: Chronic administration of morphine to rats for a period of 4 weeks resulted in a 50-60% decrease in the tissue concentrations of β-endorphin and in the in vitro release from the neurointermediate pituitary. Incorporation of [3 H]phenylalanine into isolated intermediate/posterior pituitaries in vitro revealed a reduction in the amount of label incorporated into the β-endorphin/ ACTH precursor to a similar extent (about 45%), but essentially no effect on the conversion of the precursor into β-lipotropin and β-endorphin. Extraction of mRNA from intermediate/posterior pituitaries followed by cell-free translation in a reticulocyte system showed no significant decrease in the total level of translatable mRNA. In contrast, the content of translatable mRNA coding for the β-endorphin/ACTH precursor was significantly reduced by 50-60%. Thus, long-term treatment with morphine appears to depress β-endorphin formation in the rat intermediate pituitary at the pretranslational level by markedly decreasing the activity of mRNA coding for the β-endorphin/ACTH precursor without any alteration in the processing of this precursor. 相似文献
9.
beta-Endorphin is posttranslationally processed to six derivatives, which, although structurally similar, produce distinctly different biological effects. beta-Endorphin 1-31 is a potent opioid receptor agonist, but beta-endorphin 1-27 exhibits antagonist properties, and beta-endorphin 1-26 and the alpha-N-acetyl derivatives of all three peptides lack opioid receptor activity. In the present study, we identified the beta-endorphin peptides synthesized in human hypothalamus using cation exchange HPLC. First, we tested whether postmortem changes occur by storing rat hypothalami at 4 degrees C. This demonstrated that relative amounts of the six beta-endorphin forms did not change for up to 24 h, although total beta-endorphin immunoreactivity significantly declined after 6 h. HPLC analysis of human hypothalami revealed that beta-endorphin 1-31 was the principal form, constituting 58.4 +/- 5.4% of total immunoreactivity. Substantial amounts of beta-endorphin 1-27 (13.4 +/- 1.2%) and beta-endorphin 1-26 (13.1 +/- 1.6%) were also present, but alpha-N-acetylated forms were quantitatively minor, each comprising approximately 5% of total beta-endorphin. A similar processing pattern occurred in preoptic and suprachiasmatic areas of the hypothalamus. These results show that, despite differences in primary sequence, beta-endorphin is processed similarly in both rat and human hypothalamus. Opiate-active beta-endorphin 1-31 is the principal form in both species. 相似文献
10.
David M. Bronstein Nicola C. Day Howard B. Gutstein Keith A. Trujillo Huda Akil 《Journal of neurochemistry》1993,60(1):40-49
Abstract: There appear to be two anatomically distinct β-endorphin (βE) pathways in the brain, the major one originating in the arcuate nucleus of the hypothalamus and a smaller one in the area of the nucleus tractus solitarius (NTS) of the caudal medulla. Previous studies have shown that these two proopiomelanocortin (POMC) systems may be differentially regulated by chronic morphine treatment, with arcuate cells down-regulated and NTS cells unaffected. In the present experiments, we examined the effects of chronic opiate antagonist treatment on βE biosynthesis across different CNS regions to assess whether the arcuate POMC system would be regulated in the opposite direction to that seen after opiate agonist treatment and to determine whether different βE-containing areas might be differentially regulated. Male adult rats were administered naltrexone (NTX) by various routes for 8 days (subcutaneous pellets, osmotic minipumps, or repeated intraperitoneal injections). Brain and spinal cord regions were assayed for total βE-ir, different molecular weight immunoreactive β-endorphin (βE-ir) peptides, and POMC mRNA. Chronic NTX treatment, regardless of the route of administration, reduced total βE-ir concentrations by 30–40% in diencephalic areas (the arcuate nucleus, the remaining hypothalamus, and the thalamus) and the midbrain, but had no effect on βE-ir in the NTS or any region of the spinal cord. At the same time, NTX pelleting increased POMC mRNA levels in the arcuate to ~ 140% of control values. These data suggest that arcuate POMC neurons are up-regulated after chronic NTX treatment (whereas NTS and spinal cord systems remain unaffected) and that they appear to be under tonic inhibition by endogenous opioids. Chromatographic analyses demonstrated that, after chronic NTX pelleting, the ratio of full length βE1–31 to more processed βE-ir peptides (i.e., βE1–27 and βE1–26) tended to increase in a dose-dependent manner in diencephalic areas. Because βE1–31 is the only POMC product that possesses opioid agonist properties, and βE1–27 has been posited to function as an endogenous anatgonist of βE1–31, the NTX-induced changes in the relative concentrations of βE1–31 and βE1–27/βE1–26 may represent a novel regulatory mechanism of POMC cells to alter the opioid signal in the synapse. 相似文献
11.
Gian Sberna Javier Sáez-Valero Konrad Beyreuther Colin L. Masters David H. Small 《Journal of neurochemistry》1997,69(3):1177-1184
Abstract: One of the characteristic changes that occurs in Alzheimer's disease is the loss of acetylcholinesterase (AChE) from both cholinergic and noncholinergic neurons of the brain. However, AChE activity is increased around amyloid plaques. This increase in AChE may be of significance for therapeutic strategies using AChE inhibitors. The aim of this study was to examine the effect of amyloid β-protein (Aβ), the major component of amyloid plaques, on AChE expression. Aβ peptides spanning residues 1–40 or 25–35 increased AChE activity in P19 embryonal carcinoma cells. A peptide containing a scrambled Aβ25–35 sequence did not stimulate AChE expression. To examine the possibility that the increase in AChE expression was mediated by an influx of calcium through voltage-dependent calcium channels (VDCCs), drugs acting on VDCCs were tested for their effects. Inhibitors of L-type VDCCs (diltiazem, nifedipine, and verapamil), but not N- or P- or Q-type VDCCs, resulted in a decrease in AChE expression. Agonists of L-type VDCCs (maitotoxin and S (−)-Bay K 8644) increased AChE expression. As L-type VDCCs are known to be modulated by cyclic AMP-dependent protein kinase, the effect of the adenylate cyclase activator forskolin was also examined. Forskolin stimulated AChE expression, an action that was blocked by the L-type VDCC antagonist nifedipine. The Aβ25–35 -induced increase in AChE expression was mediated by an L-type VDCC, as the effect was also blocked by nifedipine. The results suggest that the increase in AChE expression around amyloid plaques could be due to a disturbance in calcium homeostasis involving the opening of L-type VDCCs. 相似文献
12.
Differential Expression of Ciliary Neurotrophic Factor Receptor in Skeletal Muscle of Chick and Rat After Nerve Injury 总被引:1,自引:0,他引:1
Fanny C. F. Ip Amy K. Y. Fu Karl W. K. Tsim Nancy Y. Ip 《Journal of neurochemistry》1996,67(4):1607-1612
Abstract: The activities of ciliary neurotrophic factor (CNTF) were initially thought to be restricted to cells in the nervous system. However, the recent identification of its receptor specificity-conferring α component (CNTFRα) in skeletal muscle has provided the clue to the unexpected actions of CNTF in the periphery. In the present study, we demonstrated that the mRNA expression of CNTFRα in chick skeletal muscle was decreased by ∼10-fold after nerve transection; this finding is in sharp contrast to the dramatic up-regulation observed in denervated rat muscle. As a first step toward investigating the differential regulation of CNTFRα in chick and rat, we examined the mRNA expression of CNTFRα in different types of muscle following nerve injury in young and adult animals. Our findings demonstrated that the differential expression of CNTFRα observed in denervated skeletal muscle of the chick and rat was not dependent on age or muscle type. The temporal profile of the changes in CNTFRα expression was, however, dependent on the age of the chick as well as the types of muscle. Furthermore, the low level of CNTFRα expression observed in denervated chick muscle recovered to almost control levels in regenerating skeletal muscle. Taken together, our findings provided the first extensive analysis on the mRNA expression of CNTFRα and the α subunit of the acetylcholine receptor in various skeletal muscles of the chick following nerve injury and regeneration. 相似文献
13.
Hedgehog信号通路在动物胚胎期及出生后骨骼肌的生长发育过程中发挥着重要作用。本文综述了Hedgehog信号通路对骨骼肌细胞增殖分化及肌纤维特性的调控作用及其在骨骼肌发育过程中与其它信号通路交互作用最新研究进展,为畜禽肉品质改良和肌肉相关疾病治疗提供理论基础。 相似文献
14.
Changes of β-Endorphin and Met-Enkephalin Content in the Hypothalamus-Pituitary Axis Induced by Aging 总被引:2,自引:1,他引:1
C. Missale S. Govoni L. Croce A. Bosio P. F. Spano M. Trabucchi 《Journal of neurochemistry》1983,40(1):20-24
The amounts of beta-endorphin- and Met-enkephalin-immunoreactive material are higher in the pituitary of aged rats. However, the aging process decreases the content of beta-endorphin-, but does not affect that of Met-enkephalin-immunoreactive material, in hypothalamus. Thus, it seems that the regulatory mechanisms in the two areas are differentially affected by increasing age. On the other hand, the pituitary increase of these peptides is in line with the assumption that in the elderly the hormonal response to stress is impaired. 相似文献
15.
Andreas S. Beutler Michaela S. Banck †Flemming W. Bach Fred H. Gage ‡Frank Porreca ‡Edward J. Bilsky † Tony L. Yaksh 《Journal of neurochemistry》1995,64(2):475-481
Abstract: Peptides are of potential interest in the field of gene therapy but require modification by genetic engineering to facilitate their secretion. Amino terminal addition of a signal peptide is not always sufficient to achieve this goal, as found in this study for β-endorphin. To overcome this problem, addition of the pre-pro-sequence of mouse nerve growth factor to β-endorphin was tested. Retrovirus-mediated expression of a hybrid construct of the pre-pro-sequence of nerve growth factor and human β-endorphin in primary fibroblasts resulted in the secretion of β-endorphin immunoreactivity at a rate of 620 pg/h/106 cells. Analysis of the secreted β-endorphin immunoreactivity with reverse-phase HPLC, immunoassays using three different antibodies, and an assay for the specific displacement of [3 H][ d -Ala2 , N -MePhe4 ,Gly-ol5 ]enkephalin from μ-opioid receptors suggests that the pre-pro-sequence is cleaved off from the pre-pro-sequence/β-endorphin construct prior to secretion, resulting in bona fide β-endorphin. Transplantation of β-endorphin-secreting cells into brain or spinal cord may provide a gene therapy approach for the treatment of chronic, opioid-sensitive pain states. 相似文献
16.
Gian Sberna Javier Sáez-Valero Qiao-Xin Li Christian Czech Konrad Beyreuther Colin L. Masters Catriona A. McLean David H. Small 《Journal of neurochemistry》1998,71(2):723-731
Abstract: Acetylcholinesterase (AChE) expression is markedly affected in Alzheimer's disease (AD). AChE activity is lower in most regions of the AD brain, but it is increased within and around amyloid plaques. We have previously shown that AChE expression in P19 cells is increased by the amyloid β protein (Aβ). The aim of this study was to investigate AChE expression using a transgenic mouse model of Aβ overproduction. The β-actin promoter was used to drive expression of a transgene encoding the 100-amino acid C-terminal fragment of the human amyloid precursor protein (APP CT100). Analysis of extracts from transgenic mice revealed that the human sequences of full-length human APP CT100 and Aβ were overexpressed in the brain. Levels of salt-extractable AChE isoforms were increased in the brains of APP CT100 mice. There was also an increase in amphiphilic monomeric form (GA 1 ) of AChE in the APP CT100 mice, whereas other isoforms were not changed. An increase in the proportion of GA 1 AChE was also detected in samples of frontal cortex from AD patients. Analysis of AChE by lectin binding revealed differences in the glycosylation pattern in APP CT100 mice similar to those observed in frontal cortex samples from AD. The results are consistent with the possibility that changes in AChE isoform levels and glycosylation patterns in the AD brain may be a direct consequence of altered APP metabolism. 相似文献
17.
Divergent Regulation of Acetylcholinesterase and Butyrylcholinesterase in Tissues of the Rat 总被引:1,自引:2,他引:1
Abstract: Investigating the possibility that acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are regulated in a coordinated manner, we have examined the natural variation in activity of these two enzymes in several tissues of adult male Sprague-Dawley, Fischer-344, and Wistar-Furth rats. Both enzymes varied greatly in mean activity among brain, diaphragm, atria, serum, superior cervical ganglia, and liver. In Sprague-Dawley rats there were also large individual variations with up to a fivefold range of AChE activities and up to a 100-fold range of BuChE activities in a given tissue. Individual variations in cholinesterase activities appeared to be smaller in the inbred Fischer-344 or Wistar-Furth rats. Experiments with internal standards of partially purified AChE and BuChE indicated that the individual variations probably reflected differences in the intrinsic content or specific activity of the tissue enzymes. Comparison of the AChE activities in different tissues of a given group of rats failed to reveal statistically significant correlations in any strain (i.e., the relative activity of any one tissue was no guide to the relative activity of any other tissue in the same rat). This result indicates that the regulation of AChE is tissue-specific. By contrast, BuChE activity showed highly significant correlations among the majority of the tissues examined in the Sprague-Dawley rats, implying that widely dispersed factors can affect the regulation of this enzyme. Body-wide regulation is not necessarily the rule, however, since only a single tissue pair in the inbred Fischer rats and none of the pairs in the Wistar-Furth rats showed significant correlations of BuChE activity. In general, AChE and BuChE activities were not correlated with each other to a statistically significant degree. We conclude that the control of these enzymes normally involves different mechanisms and is strongly affected by the genetic background of the sample population. 相似文献
18.
Acetylcholinesterase secretion by parasitic nematodes. I. Evidence for secretion of the enzyme by a number of species 总被引:4,自引:0,他引:4
B M Ogilvie T L Rothwell K C Bremner H J Schnitzerling J Nolan R K Keith 《International journal for parasitology》1973,3(5):589-597
Studies were made on the acetylcholinesterase of a number of species of nematode parasites of the gastrointestinal tract of sheep, cattle, mice and rats. Results obtained by the use of a number of indirect techniques to detect acetylcholinesterase secretion, suggest that the parasitic stages of most, but not all, of the nematodes studied secreted acetylcholinesterase. 相似文献
19.
Judianne Davis-Salinas Susan M. Saporito-Irwin Carl W. Cotman William E. Van Nostrand 《Journal of neurochemistry》1995,65(2):931-934
Abstract: The progression of Alzheimer's disease and related disorders involves amyloid β-protein (Aβ) deposition and pathologic changes in the parenchyma as well as cerebral blood vessels. The cerebrovascular Aβ deposits in these disorders are associated with degenerating smooth muscle cells in the vessel wall, which have been shown to express the Aβ precursor (AβPP) and Aβ. Here, we show that Aβ1–42 , an abundant cerebrovascular form of Aβ, causes cellular degeneration in cultured human cerebrovascular smooth muscle cells. This stress response is accompanied by a striking increase in the levels of cellular AβPP and soluble Aβ peptide produced in these degenerating cells. These data provide the first experimental evidence that Aβ can potentially contribute to the onset and progression of the cerebrovascular pathology. The present findings suggest that this mechanism may involve a molecular cascade with a novel product-precursor relationship that results in the adverse production and subsequent accumulation of Aβ. 相似文献
20.
† W. S. T. Griffin O. Yeralan J. G. Sheng ‡F. A. Boop †§¶R. E. Mrak C. R. Rovnaghi †B. A. Burnett #A. Feoktistova ††L. J. Van Eldik 《Journal of neurochemistry》1995,65(1):228-233
Abstract: Neuritic sprouting and disturbances of calcium homeostasis are well described in epilepsy. S100β is an astrocyte-derived cytokine that promotes neurite growth and induces increases in levels of intracellular calcium in neurons. In sections of neocortex of surgically resected temporal lobe tissue from patients with intractable epilepsy, we found that the number of S100β-immunoreactive astrocytes was approximately threefold higher than that found in control patients ( p < 0.001). These astrocytes were activated, i.e., enlarged, and had prominent processes. Temporal lobe tissue levels of S100β were shown by ELISA to be fivefold higher in 21 epileptics than in 12 controls ( p < 0.001). The expression of the astrocyte intermediate filament protein, glial fibrillary acidic protein, was not significantly elevated in epileptics, suggesting a selective up-regulation of S100β expression. Our findings, together with established functions of S100β, suggest that this neurotrophic cytokine may be involved in the pathophysiology of epilepsy. 相似文献